

Эпидемиология внутрибольничных инфекций и инфекций с внечеловеческим резервуаром

ЭПИДЕМИОЛОГИЯ ВНУТРИБОЛЬНИЧНЫХ

ИНФЕКЦИЙ (ВБИ)

Актуальность проблемы внутрибольничных инфекций ОБУСЛОВЛЕНА:

- высоким уровнем заболеваемости и летальности;
- значительным экономическим ущербом, причиняемым данной группой инфекций.

Актуальность проблемы внутрибольничных инфекций

- ВБИ сохраняют актуальность для всех экономически развитых стран.
- В европейских странах их переносят **3-10**% пациентов, прошедших через стационары, а в отделениях интенсивной терапии частота ВБИ возрастает **до 20%.**
- В *США* ежегодно возникает более 2 млн. случаев ВБИ. При стоимости 1 случая ВБИ 4449 долларов, общий экономический ущерб от них составляет 4,5 млрд.долларов.

Актуальность проблемы внутрибольничных инфекций

В РОССИИ:

- ВБИ развиваются у 2% госпитализированных больных.
- Летальность при ВБИ колеблется от 3,5 до 60%.
- В настоящее время официально регистрируют **50-60 тыс. ВБИ в год** (по расчетным же данным, их должно быть порядка **2,5 млн.**).
- В хирургических стационарах частота ВБИ составляет **0,2-0,3%**, в то время как по данным специальных исследований **15-18%**, причем в **40%** случаев ВБИ являются причиной послеоперационной летальности.

Внутрибольничные инфекции - это

 инфекции, которые возникают у больных после поступления в лечебное учреждение при условии, что в момент поступления у больного не было клинических проявлений этих инфекций, и он не находился в инкубационном периоде,

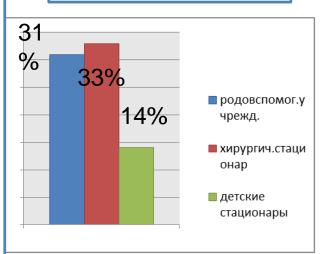
а также

- инфекции, приобретенные больным во время пребывания в стационаре, но не проявлявшиеся клинически до момента его выписки.

К внутрибольничным инфекциям <u>Не</u> относятся случаи

- внутриутробного инфицирования;
- заражения новорожденного при прохождении через родовые пути матери;
- поступления пациента в стационар в конце инкубационного периода;
- обострения затяжного течения инфекции, имевшейся у пациента до госпитализации.

Внутрибольничные инфекции могут быть:


- Экзогенными
- Эндогенными («госпитальные штаммы»), которые характеризуются:
- повышенной вирулентностью
- резистентностью к антибиотикам
- резистентностью к дезинфектантам
- резистентностью к УФ-облучению
- неприхотливостью к среде обитания

Внутрибольничные инфекции

В Краснодарском крае по отчетным данным, по месту выявления ВБИ регистрируются:

- 1. 31%- родовспомогательные учреждения
- 2. 22%-хирургические стационары,
- 3. 33%-амбулаторно-поликлинические учреждения
- 4. 14% детские отделения.
- 5. В структуре патологии внутрибольничных инфекций:
- 6. 36,4% приходится на гнойно-септические инфекции (ГСИ) новорождённых,
- 7. 33% на постинъекционные инфекции,
- 8. 21,5% на послеоперационные инфекции,
- 9. 7,8% на ГСИ родильниц
- 10. 0,8% на пневмонии,
- 11. 0,4% на другие инфекции (ОКИ, сальмонеллез, ОРЗ).

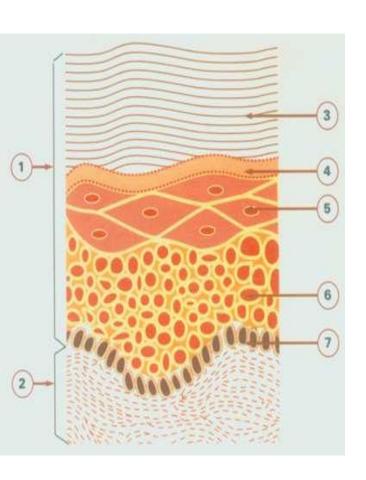
Места выявления ВБИ (%)

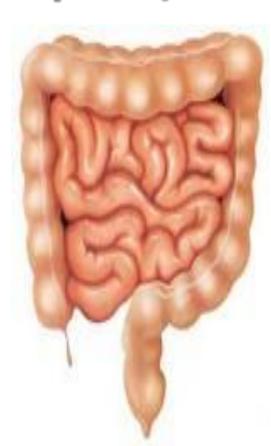
ФАКТОРЫ ВОЗНИКНОВЕНИЯ внутрибольничных инфекций

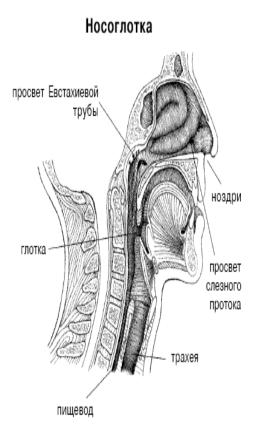
- снижение сопротивляемости организма, обусловленное болезнью или лечением,
- скопление и циркуляция возбудителей заболевания в лечебном учреждении,
- селекция антибиотико-устойчивых или высоковирулентных возбудителей болезней,
- повышенные возможности контактов и заражения.

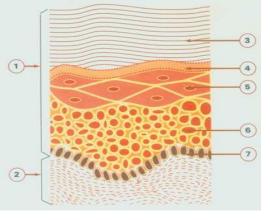
Для возникновения и распространения внутрибольничных инфекций имеют также значение:

- инфицирующая доза,
- устойчивость возбудителя,
- восприимчивость организма хозяина,
- пути передачи возбудителя,
- физические факторы окружающей среды (температура, относительная влажность воздуха, запыленность и т. д.).


Источники внутрибольничной инфекции:


- медицинский персонал ЛПУ
- посетители
- больные со стертыми формами инфекционных заболеваний
- бактерионосители

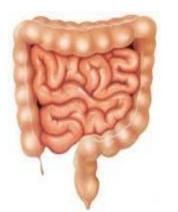

Механизм передачи



Резервуары внутрибольничных инфекций

Резервуары внутрибольничных инфекций

Кожа

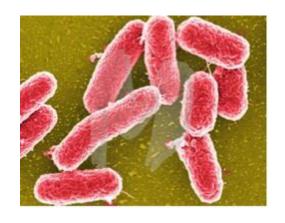

- У 10—20% (иногда до 40%) персонала и больных, находящихся в больнице, на коже обнаруживаются стафилококки.
- Кишечная палочка выявляется на коже у 13— 21% больных и у 6—9% персонала, энтерококки соответственно у 27 и 22%.

просвет Евстахиевой трубы ноздри просвет слезного протока трахея

Резервуары внутрибольничных инфекций

Полость носоглотки

Среди больных число носителей стафилококков в глотке может достигать 65%, у новорожденных на 5-й день после рождения заселение стафилококками ротовой полости достигает 60%



Резервуары внутрибольничных инфекций

Кишечник

В фекалиях больных, находящихся в медицинских учреждениях обнаруживают:

- энтеровирусы,
- сальмонеллы,
- энтеропатогенную кишечную палочку,
- шигеллы,
- синегнойную палочку,
- грибы рода кандида

Среди медицинского персонала частота носительства возбудителей кишечной группы составляет 0,2— 3,0%, у госпитализированных больных достигает 18%.

Группы пациентов, особо восприимчивых к внутрибольничным инфекциям:

- новорожденные
- недоношенные дети
- больные старшего возраста
- ослабленные пациенты с тяжелой хронической патологией

Типичные места обитания микроорганизмов, часто встречающихся в медицинских учреждениях

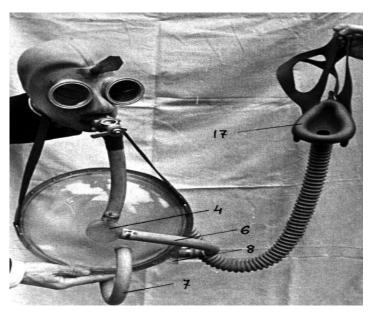
Место обитания

Микроорганизмы

Мочевые катетеры

Кишечная палочка, фекальный стрептококк, протей, энтеробактерии, клебсиелла, синегнойная палочка, золотистый стафилококк, грибы рода кандида

Инструменты для внутривенного введения


- грамотрицательные бактерии,
- энтеробактерии,
- флавобактерии,
- синегнойная палочка,
- золотистый стафилококк,
- вирус гепатита В

Аппараты для искусственного дыхания

- грамотрицательные бактерии,
- псевдомонады,
- золотистый стафилококк,
- стрептококк

Системы, в которых используется вода

(увлажнители, вентиляторы, ионизаторы, дистилляторы, ингаляторы), приборы для гидродиализа и гидротерапии

Грамотрицательные бактерии и их токсины, ацинетобактеры, серрация, аэромонады,

клебсиелла, вирус гепатита В, легионеллы

Эффективная профилактика внутрибольничных инфекций включает:

- планирование и расположение основных функциональных блоков в лечебнопрофилактических учреждениях;
- исключение аэрогенной инфекции;
- соблюдение правил личной гигиены;
- дезинфекция и стерилизация;
- организация уборки отделений;
- тактика ограничения и рационального назначения антибиотиков;
- бактериологический контроль объектов в лечебно-профилактических учреждениях.

Планирование и расположение основных функциональных блоков

Основное условие профилактики внутрибольничных инфекций: разделение палат и операционного блока. Между ними должен быть шлюз-тамбур, через который в операционную не должны попадать персонал отделения и больные.

Антимикробный режим любого отделения

- Включает разделение асептической (чистой) и септической (гнойной, нечистой) зон, которые должны располагаться в разных помещениях.
- Если это требование выполнить невозможно, операции по поводу гнойных процессов производят в специально выделенные дни с последующей тщательной дезинфекцией операционного блока и всего оборудования.

Исключение аэрогенной инфекции

• С целью исключения аэрогенной инфекции и снижения микробной обсемененности помещений, их необходимо подвергать ультрафиолетовому облучению. Поэтому все помещения оперблока (в том числе и тамбур) должны быть оснащены источниками бактерицидного ультрафиолетового облучения.

Ультрафиолетовые облучатели

Объектами исследования при проведении бактериологического контроля ЛПУ являются:

- воздушная среда,
- различные предметы внешней среды,
- хирургический инструментарий,
- шовный материал,
- руки хирургов и кожа операционного поля.

Дезинфекция и стерилизация медицинского инструментария регламентируется отраслевым стандартом

ОСТ 42-21-2-85

Основные этапы обработки изделий медицинского назначения

• Дезинфекция

• Предстерилизационная очистка

• Стерилизация (подвергают все изделия, соприкасающиеся с раневой поверхностью, контактирующие с собственной кровью пациента или вводимой в него и инъекционными препаратами, а также изделия, соприкасающиеся в процессе эксплуатации со слизистой оболочкой и способные вызывать её повреждение)

Предстерилизационная очистка

- Проводят для удаления белковых, жировых и механических загрязнений, а также остатков лекарственных препаратов после дезинфекции или одновременно с ней (в зависимости от применяемого средства).
- Предстерилизационную очистку и стерилизацию изделий проводят в централизованных стерилизационных в соответствии с действующими требованиями.

Предстерилизационная очистка

ручной или механизированный (с применением моечных машин или установок) способы

Этапы:

- предварительное ополаскивание в проточной воде;
- замачивание в одном из моющих поверхностноактивных средств;
- промывание каждого инструмента щёткой в моющем растворе;
- ополаскивание под проточной водой;
- ополаскивание дистиллированной водой;
- вакуумная сушка.

Качество предстерилизационной очистки

оценивают по отсутствию следующих положительных проб:

- на наличие крови постановкой азопирамовой или амидопириновой пробы;
- на наличие остаточного количества щелочных компонентов моющих средств постановкой фенолфталеиновой пробы;
- *на наличие жира* постановкой пробы с суданом.

Методы стерилизации медицинского инструментария

• Физические

• Химические

Физические методы стерилизации

- пар под давлением
- сухой горячий воздух
- в среде нагретых шариков
- радиационный метод

Паровой метод стерилизации

стерилизуют хирургические инструменты, детали приборов и аппаратов из металлов, устойчивых к коррозии, из стекла, шприцы с пометкой 200°С, хирургическое бельё, перевязочный и шовный материалы, изделия из резины (перчатки, трубки, катетеры, зонды и т.д.), латекса, отдельных видов пластмасс

АВТОКЛАВЫ

Автоклав представляет собой установку для стерилизации паром под давлением. Температура насыщенного пара зависит от давления.

Режимы работы автоклава:

- ❖ 132 °C 2 атмосферы(2 кгс/см2) 20 минут основной режим. Стерилизуют все изделия (стекло, металл, текстиль) КРОМЕ РЕЗИНОВЫХ.
- ❖ 120 °C 1 атмосфера(1 кгс/см2) 45 минут щадящий режим (стекло, металл, резиновые изделия, полимерные изделия).
- ❖ 110 °C 0,5 атмосферы(0,5 кгс/см2) 180 минут особо щадящий режим (нестойкие препараты, питательные среды).

Воздушный метод стерилизации

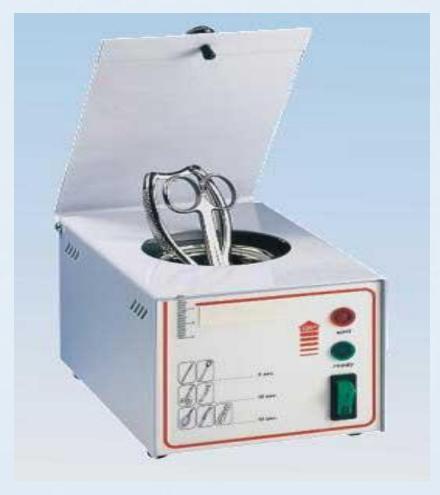
стерилизуют хирургические, гинекологические, стоматологические инструменты, детали приборов и аппаратов, в том числе изготовленные из неустойчивых к коррозии металлов, шприцы с пометкой 200°С, инъекционные иглы, изделия из силиконированной резины.

Стерилизатор сухожаровой

Стерилизатор сухожаровой

СТЕРИЛИЗАЦИЯ В СУХОЖАРОВОМ ШКАФУ ПРОИСХОДИТ ПРИ ПОМОЩИ ЦИРКУЛЯЦИИ ВНУТРИ НЕГО ГОРЯЧЕГО ВОЗДУХА

- ПРИ СТЕРИЛИЗАЦИИ СУХИМ ЖАРОМ БАКТЕРИАЛЬНЫЕ СПОРЫ ПЕРЕНОСЯТ БОЛЕЕ ВЫСОКИЕ ТЕМПЕРАТУРЫ И ПРИТОМ ДОЛЬШЕ, ЧЕМ ПРИ СТЕРИЛИЗАЦИИ ВЛАЖНЫМ ЖАРОМ. ПОЭТОМУ ЖАРОСТОЙКУЮ СТЕКЛЯННУЮ ПОСУДУ, ПОРОШКИ, МАСЛА И ДР. СТЕРИЛИЗУЮТ В ТЕЧЕНИЕ 1 ЧАСА ПРИ ТЕМПЕРАТУРЕ 180°C.
- СТЕРИЛИЗАЦИЯ В АВТОКЛАВЕ И СУХОЖАРОВОМ ШКАФУ В НАСТОЯЩЕЕ ВРЕМЯ ЯВЛЯЕТСЯ ГЛАВНЫМ, НАИБОЛЕЕ НАДЕЖНЫМ СПОСОБОМ СТЕРИЛИЗАЦИИ ХИРУРГИЧЕСКИХ ИНСТРУМЕНТОВ, СТЕКЛЯННОЙ ПОСУДЫ


Гласперленовые стерилизаторы

- стерилизующая среда нагретые до 190-250°C стеклянные шарики;
- стерилизуют инструменты простой конфигурации, полностью состоящие из металла, применяемые в стоматологии.

СТЕРИЛИЗАЦИЯ ИНСТРУМЕНТА ПРОИЗВОДИТСЯ В ТЕЧЕНИЕ ОЧЕНЬ КОРОТКОГО ВРЕМЕНИ — НЕ БОЛЕЕ 20 СЕКУНД. БЛАГОДАРЯ ТАКОМУ КОРОТКОМУ ПЕРИОДУ И НЕРАЗРУШАЮЩЕМУ ВОЗДЕЙСТВИЮ СТЕРИЛИЗАЦИОННЫХ (ГЛАССПЕРЛЕНОВЫХ) ШАРИКОВ НА ИНСТРУМЕНТ, НЕГАТИВНОЕ ВЛИЯНИЕ ВЫСОКОЙ ТЕМПЕРАТУРЫ ПРАКТИЧЕСКИ ОТСУТСТВУЕТ.

Гласперленовые стерилизаторы

Радиационный метод стерилизации

Антимикробная обработка может быть осуществлена с помощью ионизирующего излучения и ультрафиолетовых лучей. Лучевую стерилизацию ү-лучами, применяют в специальных установках при промышленной стерилизации инструментов однократного применения. Ультрафиолетовые лучи применяются для стерилизации помещений, оборудования в биксах, а также для стерилизации дистиллированной воды.

Химические методы стерилизации

- *Газовый метод* (окись этилена, смесь ОБ окиси этилена и бромистого метила, формальдегид, озон) стерилизуют изделия из различных материалов.
- Химические средства (растворы антисептиков)
 - для стерилизации изделий из термолабильных материалов, снабжённых оптическими и прочими устройствами. Преимущества метода стерилизации растворами щадящие температурные режимы и возможность их обеззараживания на местах.

После химической стерилизации изделия необходимо дегазировать (в случае газовой обработки) или тщательно отмыть.

Газовая стерилизация осуществляется в специальных герметичных камерах.

Стерилизующим агентом обычно являются: пары формалина (на дно камеры кладут таблетки формальдегида) или окись этилена. Инструменты, уложенные на сетку, считаются стерильными через 6-48 часов (в зависимости от компонентов газовой смеси и температуры в камере).

Отличительной чертой метода является его минимальное отрицательное влияние на качество инструментария, в связи с чем способ используют прежде всего для стерилизации оптических, особо точных и дорогостоящих инструментов.

Стерилизатор озоновый

Электрохимические установки серии СТЭЛ

- производят электрохимически активированные хлор- и щелочьсодержащие растворы путем мембранного электролиза за счет воздействия электрического поля высокой напряженности на слабый водный раствор поваренной соли
- используют их как для дезинфекции и стерилизации, так и для предстерилизационной очистки мединструментов и др. изделий, а также для обеззараживания различных объектов в лечебнопрофилактических учреждениях: поверхностей пола, мебели, предметов ухода за больными, белья, посуды, санитарнотехнического оборудования, уборочного инвентаря при инфекциях бактериальной (включая туберкулез), вирусной (включая парентеральные вирусные гепатиты и ВИЧ-инфекцию) и грибковой этиологии.

«СТЭЛ-ТУМАН» ДЛЯ ДЕЗИНФЕКЦИИ ЗАМКНУТЫХ ОБЪЕМОВ ПОМЕЩЕНИЙ, ЕМКОСТЕЙ, ТРАНСПОРТНЫХ СРЕДСТВ И САНАЦИИ ВОЗДУШНОЙ СРЕДЫ

ПЛАЗМЕННЫЙ МЕТОД СТЕРИЛИЗАЦИИ

Это самый современный метод стерилизации, известный на сегодняшний день. Он позволяет стерилизовать любые медицинские изделия, от полых инструментов до кабелей электроприборов, к которым в ряде случаев вообще не удается применить ни один из известных методов стерилизации.

Минимальное время обработки в плазменном стерилизаторе — от 35 минут, рабочая температура — 36-60°С. Одно из основных преимуществ этого метода — отсутствие токсичных отходов, образуются только кислород и водный пар. Плазменная стерилизация уничтожает все формы и виды микроорганизмов.

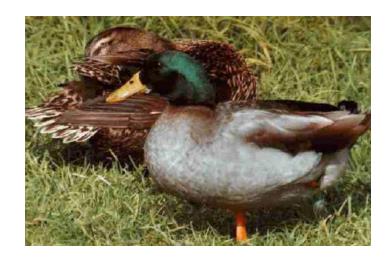
Плазменные стерилизаторы – перспективное оборудование, но для большинства российских медицинских учреждений слишком дорогостоящее.

Система STERRAD

стерилизаторы, действующим агентом в которых служит низкотемпературная плазма, создаваемая с помощью электрического разряда или радиочастотного электромагнитного излучения в газовой среде — парах перекиси водорода, альдегидов.

- позволяет осуществить стерилизацию изделий медицинского назначения из термонестойких материалов;
- имеет короткий цикл стерилизации и поэтому исключает этап отмывания или дегазации после нее.

Система STERRAD



Контроль качества и эффективности дезинфекции и стерилизации в ЛПУ

проводят специалисты ФГУЗ «Центр гигиены и эпидемиологии» и дезинфекционных станций одновременно с контролем санитарно-противоэпидемического режима.

Осуществляется методами:

- визуальным,
- химическим (использование тест-систем),
- бактериологическим (в лабораторных условиях)

ЭПИДЕМИОЛОГИЯ ИНФЕКЦИЙ С ВНЕЧЕЛОВЕЧЕСКИМ РЕЗЕРВУАРОМ

Классификация инфекций с внечеловеческим резервуаром

- Зоонозы группа инфекционных заболеваний, источником при которых служат животные, а человек, как правило, является биологическим тупиком.
- Зооантропонозы группа инфекционных заболеваний, источником при которых являются животные и человек.
- Сапронозы группа инфекционных заболеваний, источником при которых являются субстраты внешней среды почва, вода, реже растения, животные.

Эпидемиологические особенности зоонозов

- множество источников возбудителя инфекции
- множество механизмов и путей заражения
- многообразие клинических форм и проявлений заболевания
- тяжесть течения заболеваний
- большой экономический ущерб

Источники возбудителей зоонозов

- Млекопитающие
- Птицы
- Рептилии и рыбы
 - Бешенство волки, лисы, енотовидные собаки, скунсы.
 - Туляремия зайцы, ондатры, водяные крысы.
 - Бруцеллёз коровы, козы, овцы.
 - Орнитоз различные птицы.
 - Токсоплазмоз кошки.

Актуальность проблемы зоонозов

- 1/3 всех заразных заболеваний составляют зоонозы.
- Из 30 вновь возникших за последние 30 лет инфекционных болезней – 2/3 зоонозы (геморрагические лихорадки Эбола, Ласа, новый вариант болезни Крейтцфельдта-Якобса, Хантавирусный легочный синдром, вызываемая Майравирусом денгеподобная лихорадка, вызываемый Хупа-вирусом энцефалит, кампилобактериоз и др.)

Основные отличительные особенности экологии возбудителей зоонозов и эпидемиологии вызываемых ими инфекций (учение о природной очаговости инфекционных болезней Е.Н. Павловского).

- Возбудители зоонозов являются облигатными паразитами животных, следовательно, источником для человека в естественных условиях служат зараженные животные.
- Не реализуется механизм передачи от зараженного человека к здоровому, поскольку человек является биологическим тупиком.
- Заболеваемость зоонозами носит спорадический характер.

Основные отличительные особенности экологии возбудителей зоонозов и эпидемиологии вызываемых ими инфекций

- Приуроченность к определенным местностям (энзоотичность и эндемичность).
- Выраженная сезонность.
- Могут быть использованы как биологическое оружие (из 30 включенных в список возбудителей биологического оружия – 20 – зоонозы).

Природно-очаговые зоонозы

настоящему времени известно несколько десятков природно-очаговых болезней вирусной (геморрагические лихорадки), бактериальной (чума, лептоспироз), риккетсиозной туляремия, (лихорадка Ку, цуцугамуши, клещевой сыпной тиф, тиф), спирохетозной крысиный СЫПНОЙ клещевой тиф, боррелиоз), (возвратный протозойной (лейшманиозы) этиологии.

Эпидемические очаги

Эпидемический очаг – участок земной поверхности, в пределах которого циркуляция возбудителя осуществляется неопределенно долгий срок без заноса извне Виды эпидемических очагов

- Природные очаги
- Антропургические (синантропные) очаги
- Природно-антропургические очаги

КЛАССИФИКАЦИЯ ПРИРОДНЫХ ОЧАГОВ

- Моновекторный природный очаг, связанный с наличием переносчиков, относящихся к одному биологическому виду.
- Поливекторный природный очаг, связанный с наличием переносчиков, относящихся к различным биологическим видам.
- **Моногостальный** природный очаг, связанный с наличием источников (резервуаров) инфекции, относящихся к одному биологическому виду.
- Полигостальный природный очаг, связанный с наличием источников (резервуаров) инфекции, относящихся к различным биологическим видам.

Иммунологический аспект проблемы зоонозов:

- у людей отсутствует врожденный иммунитет к зоонозам;
- специфика механизмов передачи от животных людям обусловливает невозможность формирования иммунитета в результате иммунизации дробными дозами возбудителя;
- в отношении зоонозов у большинства населения отсутствует и поствакцинальный иммунитет, поскольку массовая вакцинация населения не проводится.

Классификация зоонозов

• по этиологии: вирусные, бактериальные, хламидиозы, боррелиозы, риккетсиозы, протозоозы, гельминтозы, прионовые

• по механизму заражения: нетрансмиссивные и трансмиссивные

Нетрансмиссивные зоонозы

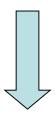
Условия, при которых возможно заражение:

уход, кормление, принятие родов, снятие и обработка шкур, убой, употребление первично и вторично инфицированных продуктов, купание в инфицированных

водоемах, укус животного

Эпидемический процесс при нетрансмиссивных зоонозах

- Животное > человек
- Механизм передачи:
 - фекально-оральный
 - аэрозольный
 - контактный
 - вертикальный
- Пути передачи
 - водный
 - алиментарный
 - контактно-бытовой
 - контактный
 - воздушно-пылевой



Эпидемический процесс при трансмиссивных зоонозах

Животное (больное)

Переносчик

Трансмиссивные зоонозы

- облигатно-трансмиссивные болезни передаются только через переносчиков (малярия, весенне-летний клещевой энцефалит, жёлтая лихорадка, лейшманиозы, филяриатозы, эпидемический сыпной тиф, японский энцефалит и др.).
- факультативно-трансмиссивные болезни передаются через переносчиков и другими путями (туляремии, чумы, бруцеллёза, сибирской язвы, Ку-лихорадки и др.)

Виды передачи возбудителя при трансмиссивных зоонозах

- Механический (неспецифический) перенос (возбудитель не размножается в организме переносчика, а сохраняется лишь ограниченное время на хоботке, конечностях, крыльях и т.д.)
- Биологический (специфический) перенос (возбудитель интенсивно размножается или проходит определённые стадии своего развития в организме переносчика).

Способы передачи возбудителя переносчиками

- Инокуляция возбудитель активно вводится в организм реципиента со слюной кровососущего переносчика после нарушения целостности кожных покровов реципиента.
- *Контаминация* переносчик выделяет возбудителей с экскрементами либо срыгивает на неповреждённую кожу реципиента.

инокуляция

- специфическая инокуляция (комары передают возбудителей малярии)
- механическая инокуляция

 (передача возбудителей туляремии и сибирской язвы двукрылыми насекомыми комарами, мошками, слепнями)

Комары и личинки комаров

Блохи

Кошачья

Человеческая

КОНТАМИНАЦИЯ

- специфическая контаминация (вши передают возбудителей эпидемического сыпного тифа, эпидемического возвратного тифа, блохи— чумную палочку)
- механическая контаминация (передача возбудителей кишечных инфекций, цист простейших и яиц гельминтов синантропными мухами)

Природные факторы, влияющие на механизм передачи при зоонозах

Сезон года

- полное исчезновение переносчиков,
- увеличение (уменьшение) количества переносчиков,
- увеличение (уменьшение) активности переносчиков,
- изменение численности и активности источников (резервуаров) инфекции

Социальные факторы, , влияющие на механизм передачи при зоонозах

- строительство новых и расширение старых городских поселений;
- увеличение пребывания горожан в природных условиях (туризм, рыбная ловля, охота, сельскохозяйственные работы).

Экологические последствия реализации социальных факторов:

- адаптация грызунов и членистоногих к урбанизированной среде и формирование своеобразной городской фауны;
- расширение границ соприкосновения населённых пунктов с природноочаговыми территориями;
- учащение бытовых и производственных контактов городского населения с природой.

Противоэпидемические мероприятия при природно- очаговых зоонозах

- эпизоотологическое обследование природных очагов с целью определения риска заражения людей
- борьба с источниками и переносчиками инфекции
- лечение больных
- вакцинация людей, проживающих в непосредственной близости от природных очагов
- санитарно-просветительная работа

Сапронозы

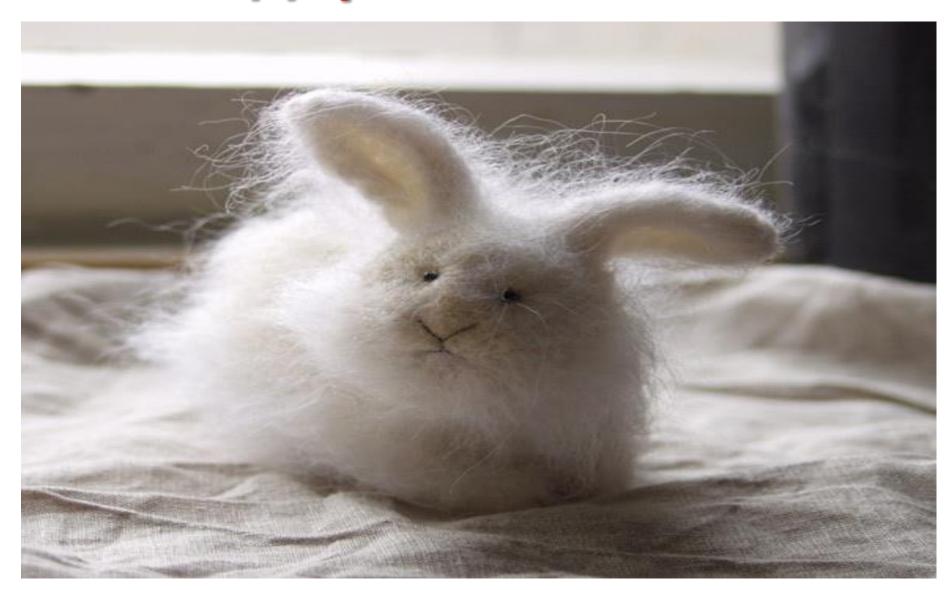
Эпидемиологические особенности

- -характерны для определенных территорий
- -высоко контагиозны
- -отличаются тяжелым течением

Особенности возбудителей сапронозов

- прежде чем вызвать заражение людей, проходят стадию концентрации на объектах окружающей среды для формирования инфицирующей дозы, обеспечивающей преодоление защитных барьеров организма (легионеллы — в испарителях кондиционеров или душевых установках, иерсинии на гниющих овощах в овощехранилищах и т.п.).
- в синантропных (техногенных очагах) могут формироваться высоковирулентные варианты из достаточно безобидных условно патогенных бактерий, широко распространённых в природе, и в этом смысле их можно считать «продуктом цивилизации» (техногенная очаговость).

КЛАССИФИКАЦИЯ САПРОНОЗОВ


- **Почвенные** (клостридиоз, сибирская язва, листериоз, актиномикоз, гистоплазмозбл астомикоз, кокцидиоидомикоз и др.)
- **Водные** (легионеллез)
- Зоофильные (лептоспироз, псевдотуберкулез)
- *Фитофильные* (эрвиниозы, листериозы и псевдомонозы).

Противоэпидемические мероприятия при сапронозах

- госпитализация больного
- ветеринарно-санитарные мероприятия
- дератизация
- дезинфекция
- иммунопрофилактика
- экстреннаяхимиопрофилактика

Благодарю за внимание!

