ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (ФГБОУ ВО КубГМУ Минздрава России)

На правах рукописи

ПРОЗОРОВСКАЯ ЮЛИЯ ИГОРЕВНА

ПОЛИМОРФИЗМЫ ГЕНОВ И ОСОБЕННОСТИ МЕТАБОЛИЧЕСКИХ СДВИГОВ У ПАЦИЕНТОВ С КОМОРБИДНОЙ ФОРМОЙ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ И ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНЬЮ ЛЕГКИХ

1.5.4. Биохимия

Диссертация на соискание ученой степени кандидата медицинских наук

Научный руководитель:

доктор медицинских наук, профессор

Павлюченко Иван Иванович

ОГЛАВЛЕНИЕ

BBI	ЕДЕНИЕ 7
ГЛ	АВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР
1.1	Патобиохимия окислительного стресса, современные представления об
	универсальных механизмах развития окислительного стресса при
	различной патологии
	1.1.1 Структура системы антиоксидантной защиты
	1.1.2 Состояние системы про-/антиоксиданты и уровень окислительного
	стресса при коморбидной форме артериальной гипертензии на
	фоне хронической обструктивной болезни легких
1.2	Состояние цитокинового звена иммунной системы при коморбидной
	форме артериальной гипертензии на фоне хронической обструктивной
	болезни легких
1.3	Состояние ренин-ангиотензин-альдостероновой системы коморбидной
	формы артериальной гипертензии на фоне хронической обструктивной
	болезни легких
1.4	Генетико-биохимические аспекты коморбидной формы артериальной
	гипертензии на фоне хронической обструктивной болезни легких
	1.4.1 Роль полиморфизмов гена АСЕ в развитии артериальной
	гипертензии, хронической обструктивной болезни легких и их
	коморбидной формы
	1.4.2 Роль полиморфизмов гена SOD1 в развитии артериальной
	гипертензии, хронической обструктивной болезни легких и их
	коморбидной формы
	1.4.3 Роль полиморфизмов гена GSTP1 в развитии артериальной
	гипертензии, хронической обструктивной болезни легких и их
	коморбидной формы

	1.4.4 Роль полиморфизмов гена NAT в развитии артериальной	
	гипертензии, хронической обструктивной болезни легких и их	
	коморбидной формы	32
	1.4.5 Роль полиморфизмов гена СҮРЗА4 в развитии артериальной	
	гипертензии, хронической обструктивной болезни легких и их	
	коморбидной формы	33
	1.4.6 Роль полиморфизмов гена СҮР2С19 в развитии артериальной	
	гипертензии, хронической обструктивной болезни легких и их	
	коморбидной формы	33
	1.4.7 Роль полиморфизмов гена IL 6 в развитии артериальной	
	гипертензии, хронической обструктивной болезни легких и их	
	коморбидной формы	34
	1.4.8 Роль полиморфизмов гена IL 10 в развитии артериальной	
	гипертензии, хронической обструктивной болезни легких и их	
	коморбидной формы	35
	1.4.9 Роль полиморфизмов гена TNF-а в развитии артериальной	
	гипертензии, хронической обструктивной болезни легких и их	
	коморбидной формы	36
ГЛА	АВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ	
2.1	Схема и этапы исследования	38
2.2	Дизайн исследования	40
2.3	Клиническая характеристика исследуемых групп пациентов	
2.4	Методика забора образцов крови и метод выделения ДНК	43
2.5	Методы, используемые для определения про-/антиоксидантного статуса	
	крови у исследуемых групп пациентов	44
2.6	Методы, используемые для генотипирования полиморфизмов генов	
	системы биотрансформации ксенобиотиков, антиоксидантной защиты,	
	иммунного контроля и ренин-ангиотензин-альдостероновой системы	
2.7	Статистические методы анализа данных	57

ГЛАВА 3. СОСТОЯНИЕ СИСТЕМЫ ПРО-/АНТИОКСИДАНТЫ
У ИССЛЕДУЕМЫХ ГРУПП ПАЦИЕНТОВ С
АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ, ХРОНИЧЕСКОЙ
ОБСТРУКТИВНОЙ БОЛЕЗНЬЮ ЛЕГКИХ И ИХ
КОМОРБИДНОЙ ФОРМОЙ 59
ГЛАВА 4. ОСОБЕННОСТИ ПОЛИМОРФИЗМА ГЕНОВ ОТДЕЛЬНЫХ
компонентов иммунной системы, системы
БИОТРАСФОРМАЦИИ КСЕНОБИОТИКОВ,
АНТИОКСИДАНТНОЙ ЗАЩИТЫ И РЕНИН-
АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВОЙ СИСТЕМ У
ИССЛЕДУЕМЫХ ГРУПП ПАЦИЕНТОВ
4.1 Характеристика полиморфизмов генов отдельных компонентов
иммунной системы, системы биотрансформации ксенобиотиков,
антиоксидантной защиты и ренин-ангиотензин-альдостероновой систем 66
4.2 Распределение генотипов полиморфизмов генов системы
биотрансформации ксенобиотиков и антиоксидантной защиты
у исследуемых групп пациентов и их соответствие равновесию Харди-
Вайнберга
4.3 Распределение генотипов полиморфизма гена АСЕ у исследуемых групп
пациентов и их соответствие равновесию Харди-Вайнберга
4.4 Распределение генотипов полиморфизмов генов иммунной системы у
исследуемых групп пациентов и их соответствие равновесию Харди-
Вайнберга 80
ГЛАВА 5. ПОКАЗАТЕЛИ СИСТЕМЫ ПРО-/АНТИОКСИДАНТЫ
и клинико-лабораторные данные у
ИССЛЕДУЕМЫХ ГРУПП ПАЦИЕНТОВ В ЗАВИСИМОСТИ
ОТ ПОЛИМОРФИЗМА ИЗУЧАЕМЫХ ГЕНОВ 83

5.1	Особенности показателеи системы про-/антиоксиданты и клинико-
	лабораторные данные у пациентов 1-й группы наблюдения с различным
	генотипом по изучаемым генам иммунной системы, системы
	биотрансформации ксенобиотиков, антиоксидантной защиты
	и гена АСЕ
	5.1.1 Особенности клинико-лабораторных данных у пациентов 1-й
	группы наблюдения с различным генотипом по изучаемым генам
	иммунной системы, системы биотрансформации ксенобиотиков,
	антиоксидантной защиты и гена АСЕ
	5.1.2 Особенности показателей системы про-/антиоксиданты
	у пациентов 1-й группы наблюдения с различным генотипом по
	изучаемым генам иммунной системы, системы биотрансформации
	ксенобиотиков, антиоксидантной защиты и гена АСЕ 86
5.2	Особенности показателей системы про-/антиоксиданты и клинико-
	лабораторные данные у пациентов 2-й группы наблюдения с различным
	генотипом по изучаемым генам иммунной системы, системы
	биотрансформации ксенобиотиков, антиоксидантной защиты
	и гена АСЕ
	5.2.1 Особенности клинико-лабораторных данных у пациентов 2-й
	группы наблюдения с различным генотипом по изучаемым генам
	иммунной системы, системы биотрансформации ксенобиотиков,
	антиоксидантной защиты и гена АСЕ 88
	5.2.2 Особенности показателей системы про-/антиоксиданты
	у пациентов 2-й группы наблюдения с различным генотипом по
	изучаемым генам иммунной системы, системы биотрансформации
	ксенобиотиков, антиоксидантной защиты и гена АСЕ 94
5.3	Особенности показателей системы про-/антиоксиданты и клинико-
	лабораторные данные у пациентов 3-й группы наблюдения с различным
	генотипом по изучаемым генам иммунной системы, системы
	биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ 96

5.3.1	Особенности клинико-лабораторных данных у пациентов 3-й	
	группы наблюдения с различным генотипом по изучаемым генам	
	иммунной системы, системы биотрансформации ксенобиотиков,	
	антиоксидантной защиты и гена АСЕ	96
5.3.2	Особенности показателей системы про-/антиоксиданты	
	у пациентов 3-й группы наблюдения с различным генотипом по	
	изучаемым генам иммунной системы, системы биотрансформации	
	ксенобиотиков, антиоксидантной защиты и гена АСЕ	96
ЗАКЛЮЧ	ТЕНИЕ	99
Выводі	Ы	104
Практи	ические рекомендации	106
Перспе	ктивы дальнейшей разработки темы исследования	108
СПИСОК	СОКРАЩЕНИЙ	109
СПИСОЬ	С ЛИТЕРАТУРЫ	110
СПИСОЬ	К ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА	126
ПРИЛО	кения	130
Приложен	ние А. Акты об использовании предложений	130
Приложен	ние Б. Патенты на изобретение	133

ВВЕДЕНИЕ

Актуальность исследования и степень ее разработанности. Заболевания сердечно-сосудистой и дыхательной систем, такие как артериальная гипертензия (АГ) и хроническая обструктивная болезнь легких (ХОБЛ) представляют категорию широко распространенных мультифакторных заболеваний (МФЗ) неинфекционной природы. Согласно исследованиям, от 30 до 45 % взрослого населения страдает от повышенного артериального давления (Камилова У.К., 2024; Сергеев Д.О., 2024; Роlman R., 2024). При этом мужчины сталкиваются с этой патологией несколько чаще, чем женщины (Al Wachami N., 2024; Taniwall A., 2024).

Данные глобального проекта BOLD (Burden of Obstructive Lung Disease) свидетельствуют о том, что около 12 % взрослых людей во всем мире страдают от ХОБЛ, а в российской популяции — около 21.8 % (М.Н. Мамедов, 2024; С.Н. Авдеев, 2024).

В настоящее время наибольшее ежегодное число смертельных случаев во всем мире обусловлено АГ, являющейся ведущим фактором развития сердечно-сосудистых заболеваний (ССЗ) (О.М. Драпкина, 2021; И.В. Долгалёв, 2023; Ю.А. Баланова, 2021).

Согласно данным всемирной организации здравоохранения (ВОЗ), прогнозируется, что 80 % смертей в XXI веке в развитых странах будут связаны с наиболее распространёнными МФЗ, лидирующие позиции среди которых занимает ССЗ, а также бронхолегочные, эндокринные и онкологические заболевания (R.M. Inciardi, 2022; J. Zhang, 2022).

В клинической практике достаточно проблемными остаются вопросы коморбидных состояний (КС), которые требуют особых подходов к диагностике и лечению, в т.ч., их прогнозированию. Коморбидность — это клиническая ситуация сосуществования у одного пациента одновременно двух или более хронических заболеваний, которые взаимосвязаны между собой этиопатогенетически. Основные причины развития КС можно разделить на несколько групп: экзогенные (внешние) и

эндогенные (внутренние). К эндогенным причинам относится генетическая предрасположенность, общий этиопатогенез ряда заболеваний, развитие одной патологии как фактор риска развития другой, единые инволютивные изменения в органах и тканях. Среди экзогенных причин основными являются: неблагоприятное влияние факторов окружающей среды, особенности образа жизни и психосоциальное неблагополучие, однородность антигенного состава микробиома пациента, лекарственная коморбидность (В.Ю. Рублев, 2022; Л.Д. Хидирова, 2023).

Одним из наиболее частых КС при АГ, как отмечается в литературе, является ХОБЛ (М.Н. Мамедов, 2023; К. Каhnert, 2023). Сочетанное возникновение данных заболеваний, главным образом, может быть объяснено наличием единых звеньев патогенеза и метаболических сдвигов, таких как системное воспаление, оксидативный стресс (ОС), дисфункция эндотелия, активация ренин-ангиотензин-альдостероновой системы (РААС), нарушение целостности и повышение жесткости крупных сосудов (Ү. Үе, 2023; Р. Вhattarai, 2022), а также общих этиологических факторов, таких как курение, возрастные изменения, малоподвижный образ жизни, избыточный вес, обструктивное апноэ сна, нейрогуморальные расстройства и другие (Х.Г. Li, 2022).

Несмотря на известный факт клинической значимости сочетания АГ и ХОБЛ, необходимо дальнейшее исследование природы коморбидности этих заболеваний как на клиническом (фенотипическом), так и на метаболическом (биохимическом) и генетическом уровнях.

 $A\Gamma$ и $XOB\Pi$ – относятся к группе $M\Phi 3$, которые имеют генетическую предрасположенность (сочетание генов, межгенные взаимодействия эпигенетические процессы). При взаимодействии различных генетических и факторов риска формируется экзогенных патологическое состояние (заболевание). Большинство исследований в области генетики МФЗ (АГ, ХОБЛ) сконцентрированы на изучении заболеваний в отдельности, однако, учитывая патогенетическую связь заболеваний на генном, молекулярном уровне, весьма актуальны в настоящее время в связи с развитием генетических исследований изучение генетических основ формирования именно коморбидности АГ с ХОБЛ (M.H. Cho, 2022; A. Agustí, 2022; K.J. Olczak, 2021).

На данном этапе развития науки и медицины не вызывает сомнений тот факт, что ведущую роль в развитии, течении и возникновении осложнений коморбидных патологий играет сочетание полиморфных форм отдельных генов основных защитно-регуляторных систем в организме индивида. Это, прежде всего, полиморфизм генов системы биотрансформации ксенобиотиков, эндогенных компонентов антиоксидантной системы (АОС), факторов иммунной регуляции (интерлейкины), регуляции деятельности сердечно-сосудистой системы, в частности – РААС. Особенности сочетания полиморфных вариантов генных сетей определяют не только характер течения болезни, эффективность проводимой фармакотерапии (R.M. Zhang, 2021).

Следует отметить, что продукты генов системы биотрансформации ксенобиотиков играют важную роль в обезвреживании токсикантов, в том числе и веществ, образующихся ходе неконтролируемых реакций свободнорадикального окисления (СРО). С другой стороны, продукты экспрессии этих генов, имеющих различия в активности и концентрации, могут инициировать развитие дисбаланса в ключевых регуляторных системах: цитокиновой (про-/ противовоспалительных цитокинов) и редокс-системе (про-/антиоксиданты) и способствовать развитию критического общепатологического феномена как ОС, сопровождающегося избыточным образованием активных форм кислорода (АФК) и перекисных соединений, играющих ведущую роль в патобиохимических сдвигах при целом ряде патологий (F. Rahman, 2021; M. Singh, 2016).

Многие исследователи указывают на ведущую роль в процессах биотрансформации ксенобиотиков метаболических и иммунных механизмов, обеспечивающих обезвреживание токсических вешества экзогенного эндогенного происхождения. Однако, в процессе биотрансформации, в результате защитной реакции иммунокомпетентных клеток и прямого воздействия ксенобиотиков на органы-мишени могут образовываться в избытке АФК, продукты СРО, перекисного окисления липидов (ПОЛ), вызывающие и поддерживающие состояния ОС (Р.М. Chauhan, 2023).

Взаимосвязь первичных генетических и вторичных средовых факторов, и ее роль в формировании коморбидных патологий и их фенотипов на молекулярно-клеточном уровне, с учетом индивидуальных метаболических сдвигов в защитно-адаптационных системах, изучены недостаточно, в том числе, и в развитии АГ и ХОБЛ, которое обусловлено главным образом нарушением редокс-баланса, синдромом эндогенной интоксикации и развитием воспалительного каскада. Между тем, понимание этих процессов играет важную роль для разработки и подбора индивидуальной персонифицированной терапии и формирования диагностического алгоритма раннего прогнозирования и мониторинга течения болезни и проводимого лечения.

Исходя из вышеизложенного, была определена основная цель и сформированы задачи данного многокомпонентного исследования.

Цель исследования — разработка генетико-биохимического алгоритма раннего прогнозирования развития АГ, ХОБЛ и их коморбидной формы на основании комплексной оценки взаимосвязи полиморфизма генов детоксикационной, антиоксидантной, иммунной и РАА систем с патобиохимическими сдвигами и клинической картиной заболеваний.

Задачи исследования:

- 1. Определить особенности метаболических сдвигов и выраженность окислительного стресса у пациентов с АГ, ХОБЛ и коморбидной форме АГ и ХОБЛ на основании изучения активности ферментов системы антиоксидантной защиты, биотрансформации ксенобиотиков (супероксиддисмутаза (СОД, SOD), каталаза (КАТ, САТ), глутатион-S-трансфераза (Г-S-T, GST) и уровню малонового диальдегида (МДА) в сравнительном плане у различных групп больных.
- 2. Определить особенности полиморфизмов отдельных локусов генов изучаемых систем: -392A > G гена CYP3A4; -681G > A гена CYP2C19; -313A > G гена GSTP1; -341C > T гена GSTP1; -481C > T гена NAT2; -7958 G > A гена SOD1; -174C > G гена IL 6; -1082 G > A и -592 C > A гена IL 10; -308 G > A гена TNF; Alu Ins/Del гена ACE при наблюдаемых патологиях.

- 3. Провести анализ взаимосвязи полиморфизма отдельных изучаемых генов и их ассоциаций с экспрессией продуктов этих генов, их функциональной активностью и степенью патобиохимических сдвигов и клиническими вариантами развития и течения АГ, ХОБЛ и коморбидной форме АГ и ХОБЛ.
- 4. Установить наиболее проблемные генетические профили изучаемых генов, которые могут служить основой ранней диагностики развития изучаемых заболеваний мультифакториальной природы и прогностической оценки степени метаболических сдвигов при данных патологиях, как в целом по всей группе заболеваний, так и по отдельным подгруппам.
- 5. На основании проведенных исследований и установленных особенностей полиморфизмов отдельных локусов изучаемых генов разработать диагностический алгоритм оценки вероятности развития и характера течения мультифакториальных заболеваний дыхательной и сердечно-сосудистой систем (ССС), являющийся основой формированием программы ДНК-чипов для раннего прогнозирования развития наблюдаемых патологий.

Научная новизна исследования

Впервые диагностическое прогностическое изучено И значение комплексного определения уровней продуктов СРО (МДА) и активности ферментов системы антиоксидантной биотрансформации защиты И ксенобиотиков в крови у больных с сочетанным течением АГ и ХОБЛ и показана их связь с развитием сочетанной патологии, при этом наиболее объективным показателем оценки степени метаболических сдвигов при данной коморбидной патологии является уровень МДА в эритроцитах.

Впервые применен комплексный подход к оценке генетической компоненты подверженности к коморбидной формы АГ и ХОБЛ, заключающийся в изучении влияния полиморфизма генов основных факторов систем биотрансформации ксенобиотиков, антиоксидантной защиты (АОЗ), РААС и иммунной системы в популяции жителей Краснодарского края, результаты которого являются основой модельного подхода для совершенствования знаний о наследственной предрасположенности к коморбидной форме АГ и ХОБЛ и установления ведущих

факторов в их развитии и вариантах течения в отдельных популяционных группах, а также раннего прогнозирования и профилактики заболеваний мультифакторной этиологии.

Впервые изучена и установлена степень взаимозависимости между генетическими и средовыми факторами в развитии универсальных патобиохимических сдвигов в организме больных, страдающих АГ и ХОБЛ, таких как воспаление, гипоксия, ОС и показаны особенности их формирования при различных генотипах и фенотипах заболевания.

Теоретическая и практическая значимость работы

Расширены представления о механизмах развития и роли окислительного стресса в патогенезе мультифакториальных заболеваний у пациентов с различным генотипом защитно-адаптационных систем, в т.ч. и с коморбидными формами мультифакториальных заболеваний, таких как АГ и ХОБЛ, что позволяет выделить ключевые звенья, определяющие сдвиги в системе про-/антиоксиданты при изучаемых патологиях. Показано, что уровень окислительного стресса наиболее точно отражают маркеры процессов свободно-радикального окисления и перекисного окисления липидов в тканях, прежде всего малоновый диальдегид. Выявленные особенности распределения полиморфных вариантов изучаемых генов факторов системы биотрансформации ксенобиотиков, антиоксидантной защиты, иммунной регуляции и ренин-ангиотензин-альдостероновой систем у больных с мультифакториальными заболеваниями сердечно-сосудистой и дыхательной системы позволяют сформировать новые представления о роли отдельных полиморфных вариантов генов и генных сетей в предикции развития и особенностях течения мультифакторных патологий, таких как АГ и ХОБЛ и их Проведенные исследования коморбидная форма. являются основой проведения полногеномных исследований в комплексе с биохимическими показателями в отдельных популяционных группах для формирования единого представления о взаимосвязи генетических и средовых факторов в развитии метаболических сдвигов при МФЗ сердечно-сосудистой и дыхательной систем. Получение данные об особенностях полиморфизма изучаемых генов легли в основу создания и патентования программы для ДНК-чипов (патент № 2833137), необходимых для раннего прогнозирования развития и оценки характера течения таких мультифакторных заболеваний, как АГ, ХОБЛ и их коморбидная форма. Результаты работы дают основание рекомендовать в качестве сопутствующий терапии АГ, ХОБЛ и, особенно, их коморбидной формы, назначения антиоксидантов прямого действия (тиолсодержащих веществ, витаминов С, Е, А; препаратов на основе янтарной кислоты) для нейтрализации токсических продуктов СРО и ПОЛ под контролем уровня этих процессов в организме больных (определение уровня МДА).

Основные научные положения диссертации, выносимые на защиту:

- 1. Выявленные в результате исследования ведущие молекулярногенетические и биохимические маркеры предрасположенности к коморбидной формы АГ и ХОБЛ являются основой использования в работе медикогенетических консультаций, медицинских организаций терапевтического и общеклинического профиля для определения генетического риска развития коморбидных патологий, затрагивающих сердечно-сосудистую и дыхательные системы организма, позволяющих персонифицировать терапию и проводить комплексную оценку прогноза заболевания.
- 2. Полученные данные служат базой для совершенствования знаний в области генетического тестирования предрасположенности к МФЗ и проведения дальнейших исследований роли генетических и фенотипических факторов в развитии изучаемых заболеваний (АГ и ХОБЛ).
- 3. Результаты исследования являются основой создания диагностическипрогностических ДНК-чипов для профилактики изучаемых патологий индивидуального подбора вида и доз лекарственных средств в зависимости от процессов их метаболизации в организме больного, с учетом полиморфизма изучаемых генов И кодируемых ИМИ белковых продуктов системы биотрансформации ксенобиотиков, участвующих в метаболизме лекарственных средств, а также обеспечивающих антиоксидантную и иммунную защиту.
- 4. Тестирование полиморфизма изучаемых генов позволит в клинической практике на этапе первичной диагностики АГ и ХОБЛ проводить вероятностное

прогнозирование особенностей метаболических сдвигов, прежде всего в системе про- /антиоксиданты, клинического течения и фенотипирования болезней, которые имеют как генетическую, так и средовую составляющую, что имеет важное значение для разработки адекватных персонифицированных схем дополнительной диагностики и проведения лечебно-профилактических мероприятий в зависимости от генотипа и фенотипа больного.

Степень достоверности и апробация результатов исследования

Полученные в ходе исследования выводы имеют достоверное подтверждение в рамках диссертационного проекта с использованием биологического материала 223 пациентов 4 групп исследованием с МФЗ (АГ, ХОБЛ и их коморбидная форма, а пациенты контрольной группы исследования) и с использованием современных методов исследования. Полученные результаты статистически обработаны в программной среде R 4.4.3 (https://cran.rproject.org) и данный анализ включал в себя несколько этапов. На первом этапе анализа количественные показатели обработаны методом однофакторного дисперсионного анализа или с помощью критерия Краскела-Уоллиса. С целью попарного сравнения использовали критерий Тьюки или критерий Данна с поправкой Холма. Вторым этапом оценивали распределение генотипов между группами с помощью построения таблицы сопряженности и оценкой критерия χ^2 и точного критерия Фишера. Для проверки соответствия распределения генотипов закону Харди-Вайнберга применялся веб-инструмент специализированный (онлайн-калькулятор) (https://www.had2know.org/academics/hardy-weinberg-equilibrium-calculator-2alleles.html). Третьем этапом оценивали регуляторный потенциал исследуемых генов, которые предположительно были связаны с АГ, ХОБЛ и их коморбидной формой, а также с развитием патологическим метаболических сдвигов при данных патологиях. Для проведения данного анализа были использованы следующие современные открытые биоинформационные ресурсы:

- Базы данных экспрессии генов: Проект GTEx (Genotype-Tissue Expression, доступный на gtexportal.org).
 - Консорциум eQTLGen (https://eqtlgen.org/cis-eqtls.html).

Для изучения межбелковых взаимодействий и выявления ключевых патобиологических и патобиохимических путей применялась платформа STRING (https://string-db.org/), которая позволяет визуализировать протеин-протеиновые связи и идентифицировать наиболее значимые биологические пути, ассоциированные с изучаемыми генами.

Полученные результаты были доложены на Международной научнопрактической конференции молодых ученых «Здоровьесберегающие технологии: опыт современности и перспективы будущего» (15.12.2023 г.), на Всероссийской научно-практической конференция с международным участием, приуроченной к 80-летнему юбилею и памяти российского ученого-генетика Иванова В.П. «Генетические аспекты мультифакториальной патологии» (20.09.2024 г.), на конференции Международной научно-практической молодых ученых «Здоровьесберегающие технологии: опыт современности перспективы И будущего» (18.12.2024 г.).

Внедрение результатов исследований. Основные положения, выводы и практические рекомендации диссертационной работы используются в учебном процессе и научно-исследовательской деятельности кафедры биологии с курсом медицинской генетики Кубанского государственного медицинского университета. Результаты исследования внедрены и используются в терапевтических и кардиологических отделениях медицинских организаций г. Краснодара (приложение 1 A).

Публикации. По теме диссертации опубликовано 14 научных работ, из них 8 — в журналах, включенных в Перечень рецензируемых научных изданий, или индексируемых базой данных RSCI, или входящих в международные реферативные базы данных и системы цитирования, рекомендованных ВАК при Минобрнауки России для опубликования основных научных результатов диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук, и издания, приравненные к ним, в том числе получен патент и свидетельство о регистрации базы данных ЭВМ (приложение Б).

Личный вклад автора в исследование. Соискателем ученой степени кандидата наук была разработана методология клинического и лабораторного этапов исследования (92 %), проведен поиск литературных источников по теме диссертации (95 %). Все лабораторные биохимические и генетические исследования диссертантом выполнены на 90 %. Статистический анализ полученных результатов был проведен на уровне 95 %. Диссертант активно участвовал в обсуждении и формулировании практических рекомендаций, выводов (84 %), написании тезисов (88 %) и статей (78 %). Автором самостоятельно были выполнены таблицы и иллюстративные материалы для научной работы (97 %).

Структура и объем диссертационной работы. Диссертационная работа изложена на 134 страницах печатного текста и состоит из следующих разделов: введение с обоснованием актуальности научного исследования, литературный обзор, 4 главы с изложение проведенных собственных исследований, заключение с обобщение полученных результатов, выводы, практические рекомендации, список литературы, приложение. Научная работа содержит иллюстрированный материал: 44 рисунка (графические изображения, схемы) и 16 таблиц с аналитическими данными. Список литературы состоит из 136 источников, 43 из них – отечественные, 93 – иностранные.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Патобиохимия окислительного стресса, современные представления об универсальных механизмах развития окислительного стресса при различной патологии

ОС — это патологическое состояние, которое характеризируется значительными дисбалансом в системе про-/антиоксиданты, с превалированием прооксидантного звена. Таким образом, ОС возникает в результате усиленной выработки АФК и/или утраты способности организма нейтрализовать их, что в последствие приводит к повреждению клеток и тканей. В настоящее время несомненным является тот факт, что данный вид стресса относится к числу наиболее часто встречающихся стресс-реакций у живых организмов и встречается при разнообразных патологических процессах и заболеваниях у человека [12, 100].

Теория развития заболеваний, вызванных ОС, основана на том, что АФК оказывают негативное действие на различные важные биополимеры — нуклеиновые кислоты, белки, липиды и углеводы, в результате чего происходит повреждение и гибель клеток. В качестве защитного механизм, способного ингибировать действия ОС путем предотвращения накопления и инактивации АФК выступает система АОЗ, имеющаяся у всех аэробных организмов [37, 24].

К агентам, провоцирующим ОС, относятся факторы, либо генерирующие АФК, либо подавляющие АОЗ. Эндогенное образование АФК происходит как побочный результат митохондриального дыхания, метаболических процессов или активации специфических ферментов (например, СОД, Г-S-T, КАТ, пероксиредоксинов, миелопероксидазы) в определенных условиях.

Кроме того, АФК могут накапливаться в результате экзогенного воздействия различных повреждающих факторов, таких как УФ-излучение, ионизирующая радиация, курение, алкоголь и др. [8, 54, 62]. Основные источники АФК представлены на рисунке 1.

Рисунок 1 – Основные источники АФК в организме человека

Все АФК разделяют на две группы соединений: радикальные и нерадикальные. К первой группе относятся супероксидный радикал (O_2^-), гидроксильные радикал (O_1^-) и оксид азота (O_2^-). Нерадикальными формами являются перекись водорода (O_2^-), синглетный кислород (O_2^-), гипохлорит (O_2^-).

Кроме того, выделяют:

- первичные $A\Phi K$ образуются в ходе окислительных процессов определенных молекул. Основные представители: O_2^- и NO. Первичные $A\Phi K$ выполняют важные регуляторные действием в организме человека;
- вторичные АФК это АФК, которые образуются при воздействии O₂⁻ с другими молекулы. Основные представители: гидроксильный радикал (•OH), пероксинитрит (ONOO⁻) и липидные радикалы. Вторичные АФК обладают выраженной токсичностью, вызывают необратимое повреждение липидов мембран, молекул ДНК, белков и обладают выраженным цитотоксическим действием [3].

1.1.1 Структура системы антиоксидантной защиты

АОЗ человека представляет собой сложную многоуровневую систему включающую ферментные и неферментные антиоксидантные компоненты, подавляющие окислительные процессы. Ключевыми ферментными звеньями являются СОД, КАТ и Г-S-T. К группе неферментных антиоксадантов относятся аскорбиновая кислота (витамин С), токоферол (витамин Е), β-каротин, тиоловые соеденения (восстановленный глутатион) и ряд других биоактивных молекул. [110, 113, 119].

СОД представляет собой металлопротеиновый фермент, основной функцией которого является катализ дисмутации супероксидного аниона (\bullet O2-) в перекись водорода (H_2O_2) (рисунок 2).

Рисунок 2 — Схема реакции, катализируемая супероксиддисмутазой (https://biokhimija.ru/oxidative-stress/aktivatsiya-kisloroda.html)

СОД относится к ключевым ферментам первой линии АОЗ. В организме человека существует три изоформы СОД: СОД1 – это димер, содержащий медь и цинк и локализуется в цитоплазме клеток; СОД2 представляет собой тетрамер, содержащий на каждую субъединицу атом Мп в качестве кофактора активного центра и локализуется в митохондриях; СОДЗ – экстрацеллюлярная форма, которая представляет собой тетрамер, содержит медь в активном центре, цинк и гепарин, связывающий домен со стороны С-конца. Изменение активности СОД наблюдается при многих заболеваниях, патологических и физиологических данного состояниях, так как активность энзима важна контроля ДЛЯ функционирования системы АОЗ в целом [108].

КАТ – это белок, имеющий четвертичную структуру и содержащий в своем активном центре гемовую группу. КАТ выстывает в качестве катализатора

реакции разложения пероксида водорода, образующегося в процессе биологического окисления, на воду и молекулярный кислород, а также способна окислять в присутствии пероксида водорода низкомолекулярные спирты и нитриты [131]. При низкой активности фермента может накапливаться пероксид водорода, который под влиянием различных факторов может превращаться в более агрессивные АФК (рисунок 3).

Рисунок 3 — Реакция, катализируемая каталазой (https://biokhimija.ru/oxidative-stress/aktivatsiya-kisloroda.html)

Г-S-Т представляет собой компонент второй фазы системы биотрансформации ксенобиотиков или активный участник реакций детоксикации. Данный фермент участвует в дезактивации ряда токсичных веществ эндогенной и экзогенной природы, в том числе и АФК, и, таким образом, обеспечивает уменьшение степени выраженности ОС [81] (рисунок 4).

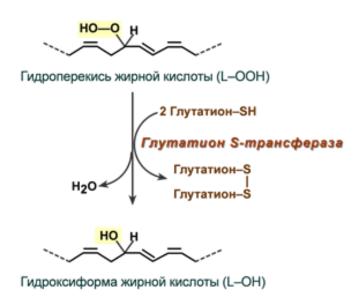


Рисунок 4 — Антиоксидантная реакция, катализируемая глутатион-S-трансферазой (https://biokhimija.ru/oxidative-stress/aktivatsiya-kisloroda.html)

Активность ферментов и уровень неферментных факторов системы AO3 претерпевает значительные изменения при различных заболеваниях и многих физиологических и патологических состояниях, при этом изменения, в

зависимости от уровня и длительности прооксидантной нагрузки, могут носить разный по выраженности и направленности характер [1, 173, 39].

1.1.2 Состояние системы про-/антиоксиданты и уровень окислительного стресса при коморбидной формы артериальной гипертензии на фоне хронической обструктивной болезни легких

С целью объяснения патогенеза развития АГ еще в 1939 г. И. Пейджом была сформирована мозаичная теория развития данного заболевания, пересмотренная и дополненная впоследствии. Согласно этой теории, в развитии АГ принимают участие следующие факторы: ОС, сдвиги в иммунной системе (ИС), состояние микробиома, активация симпатоадреналовой системы (САС) и РААС, обмен натрия и генетические факторы [84, 85, 127].

Согласно мозаичной теории, поражение сосудов при АГ включает их структурные изменения, которые приводят к вазоконстрикции, эндотелиальной дисфункции, нарушению вазодилатации, утолщению артериальных стенок.

Значение ОС в патогенезе АГ связано с повреждающим воздействием АФК на эндотелий сосудов, в результате чего происходит развитие их дисфункции и ремоделирование компонентов сердечно-сосудистой системы.

Основными АФК, которые имеют значение в развитии АГ, являются: O_2^- , NO, пероксинитрит (OONO $^-$) и H_2O_2 . O_2^- имеет очень короткий период полураспада (миллисекунды при нейтральном рН) и может быстро реагировать с NO, образуя OONO $^-$, или быстро превращаться в H_2O_2 . NO оказывает вазопротекторное действие и является важным сосудорасширяющим веществом, а OONO $^-$, в свою очередь, способствует повреждению тканей. H_2O_2 вступает в реакцию с различными клеточными белками, изменяя сигнальные пути, включая факторы транскрипции, протеинфосфатазы, киназы, ионные каналы и низкомолекулярные G-белки. Следует отметить, что ОС является также и

ключевым механизмом развития при ХОБЛ. При этом АФК образуются за счет непосредственного контакта легких с воздушными поллютантами и табачным дымом [20].

При коморбидности АГ на фоне ХОБЛ выделяют ряд общих этиологических, патобиохимических и патофизиологических факторов риска развития. Среди основных внешних причин развития патологии выделяют курение, гиподинамию, пол, возраст и др. Не вызывает сомнения тот факт, что курение является одним из основных факторов риска развития ХОБЛ и ССЗ. Согласно данным научной литературы, хроническое курение в несколько раз увеличивает риск развития различных ССЗ, в том числе и АГ [43, 101, 98].

Принято считать, что основной причиной развития сосудистой дисфункции и, как следствие, АГ является эндотелиальное повреждение [78, 99, 75]

Особое значение в развитии АГ на фоне ХОБЛ занимает активация САС за счет развития гипоксии у данной группы пациентов. В дальнейшем происходит повышение артериального давления путем задействования следующих механизмов: активации катехоламин-опосредованной вазоконстрикции, ремоделирования сосудов, адренергической стимуляции продукции и секреции ренина в юкстагломерулярных клетках и увеличением реабсорбции натрия в почках [44, 28].

РААС является важнейшим эндокринным каскадом, который регулирует обмен воды и электролитный гомеостаз, сосудистый тонус, почечную перфузию и деятельность ССС. Наряду с этим РААС принимает непосредственное участие в патогенезе ХОБЛ. САС, активированная в результате гипоксии и ОС, может влиять на компоненты РААС, в том числе и в почках. Кроме того, РААС оказывает влияние на иммунную систему и способствует развитию системного воспаления, активируя выработку фактора некроза опухоли – а (ФНО-а, TNF-а) и интерлейкина-6 (ИЛ – 6, IL-6) [30, 26].

Известно, что в развитии МФЗ, таких как АГ и ХОБЛ, играет роль взаимодействие неблагоприятных факторов внешней среды и генетическая обусловленность. Полиморфизм различных генов, прежде всего генов систем

биотрансформации ксенобиотиков и AO3, является предиктором развития различных заболеваний и патологических состояний, в т.ч. и заболеваний ССС и дыхательной системы. Исследования полногеномных ассоциаций за последнее десятилетие выявили более 1 000 Single nucleotide polymorphism (SNP), которые связаны с $A\Gamma$ [31, 7].

Необходимо обратить внимание на то, что при проведении научных исследований, как правило, уделяют внимание развитию МФЗ без связи с их коморбидностью. В результате вопрос о причинах развития того или иного КС зачастую остается открытым. Между тем коморбидность является не просто совокупностью нескольких нозологий у пациента, а взаимодействие тех или иных патофизиологических и патобиохимических механизмов, приводящих к различным клиническим проявлениям и метаболическим сдвигам, что требует особого наблюдения и использования индивидуальных схем лечения пациентов данных групп.

Таким образом, в развитии коморбидной формы АГ на фоне ХОБЛ остается много нерешенных вопросов, как в области генетической предикации, так и метаболических сдвигов, что требует дальнейшего их изучения.

Ключевая роль в генерации супероксидных радикалов принадлежит специализированной группе ферментов, среди которых особое место занимает семейство НАДФН-оксидаз (NOX-энзимы) [106].

Научно подтверждено, что в ССС главным ферментативным источником АФК является семейство ферментов NOX, которые участвуют в переносе электронов через мембраны. Данные ферменты выполняют две функции: основная — передача электронов для образования АФК и вторая функция — производство и транспорт протонов через мембраны. Ряд исследований подтверждают роль избыточной генерации АФК и ОС при АГ и повреждении органов-мишеней. Физиологические концентрации АФК играют важную роль в поддержании целостности эндотелия и сосудистой функции, тогда как повышенное образование АФК приводит к ОС, что вызывает эндотелиальную дисфункцию [105].

Оценка состояния системы АОЗ при коморбидной формы АГ на фоне ХОБЛ имеет важное диагностическое и прогностическое значение, как и изучение генетических и средовых факторов, приводящих к нарушению функционирования данной системы.

1.2 Состояние цитокинового звена иммунной системы при коморбидной форме артериальной гипертензии на фоне хронической обструктивной болезни легких

На сегодняшний день довольно очевидным является тот факт, что особую роль как в развитии АГ, так и ее коморбидной формы на фоне ХОБЛ играет ИС [48, 90]. Развитие воспалительных процессов при ХОБЛ может вызывать повреждение эндотелия, активацию СРО и генерацию избыточного количества АФК, что приводит к формированию ОС, увеличению сосудистого сопротивления и, в дальнейшем служит причиной развития АГ [91].

В структуре ИС выделяют врожденный и приобретенный иммунитет. В свою очередь врожденный иммунитет подразделяется на клеточный и гуморальный. К клеточному компоненту относят нейтрофилы, моноциты, макрофаги, тучные клетки, клетки-киллеры, дендритные клетки (ДК), эозинофилы. К гуморальным факторам врожденного звена иммунитета относят системы дефензина и комплемента [87].

Роль клеточных компонентов ИС в патогенезе коморбидной формы АГ на фоне ХОБЛ включает:

- 1. Клетки-супрессоры миелоидного происхождения способствуют продукции ряда противовоспалительных цитокинов интерлейкина 17, интерферон гамма и снижению сосудистого воспаления, тем самым уменьшают повреждение сосудов и почек и способствуют снижению артериального давления.
- 2. Моноциты продуцируют провоспалительные цитокины интерлейкин-1, IL-6, интерлейкин-8, TNF-α, которые участвуют в развитии ОС и способствуют

развитию воспалительной реакции. Более того, они приводят к дисфункции эндотелия почечных сосудов и гладкой мускулатуры, а также к повышению артериального давления.

- 3. Макрофаги продуцируют IL-1, IL-6, IL-8, TNF-α. Они так же участвуют в развитии ОС, воспалительной реакции, отложении коллагена, что приводит к эндотелиальной дисфункции, ремоделированию сосудов и повреждению почек.
- 4. Дендритные клетки продуцируют IL1, IL-6, IL-17, TNF-α, IFN-γ и способствуют активации Т-клеток, которые продуцируют воспалительные факторы IL-17A, TNF-α и IFN-γ, опосредующие проницаемость и повреждение эндотелия.
- 5. Нейтрофилы продуцируют IL-1, IL-6, TNF-α и участвуют в усилении воспалительной реакции, приводящие к эндотелиальной дисфункции и дисфункции вазодилатации.
- 6. NK-клетки продуцируют IFN-γ, TNF-α, что способствует развитию ОС и приводит к дисфункции сосудистого эндотелия [83].

Система комплемента. Активация системы комплемента, в основном, происходит через классический, альтернативный или лектиновый путь. Активация С3 – это критический этап в каскаде комплемента. С3 активируется и расщепляется на С3а и С3b, а затем С3b образует конвертазу С5. Описано, что повышенный уровень С3а и С5а вызывают стойкое повышение артериального давления (АД). Рецепторы С3а и С5а снижают уровень ангиотензина II (Ang II) [84].

Приобретенный иммунитет процесс, ЭТО посредством которого активируются Т и В лимфоциты, которые пролиферируются, дифференцируются в эффекторные клетки и вызывают ряд биологических эффектов после получения антигенной стимуляции. В структуре приобретенного иммунитета выделяют Т-лимфоцитами, клеточный иммунитет, опосредованный И гуморальный иммунитет, опосредованный В-лимфоцитами. Таким образом лимфоциты борются с различными специфическими патогенами, такими как бактерии и вирусы, путем продукции цитокинов и антител [83].

Многочисленные исследования показали, что при АГ иммунный механизм включает инфильтрацию макрофагов и нейтрофилов, презентацию антигенов дендритными клетками, активацию естественных клеток-киллеров, активацию В-клеток и Т-клеток, а также продукцию и высвобождение цитокинов.

В-лимфоциты продуцируют IFN-γ, TNF-α и усиливают воспалительные реакции, участвуют в обмене натрия, способствует повреждению почек и повышению артериального давления.

Т-хелперы (Th1, Th2, Th17) продуцируют IL-4, IL-17, IFN-γ, TNF-α для усиления воспалительного процесса, а также способствуют задержке воды и натрия, эндотелиальной дисфункция и повышение артериального давления.

Регуляторные Т-клетки продуцируют IL-4, IL-10, уменьшают воспаление сосудов, ОС, эндотелиальную дисфункцию, способствуют сосудистому ремоделированию.

CD8+ Т-клетки продуцируют IFN-γ, TNF-α, что приводит к увеличению продукции АФК и развитию воспаления сосудов, задержке воды и натрия.

Т-лимфоциты памяти продуцируют IL-17, IFN-γ, стимулируют сосудистую систему, воспаление и повреждение почек.

 γ δ Γ -клетки продуцируют IFN- γ , TNF- α , IL-4, IL-10, IL-17, что способствует повышению АД [56].

Таким образов необходимо отметить, что клетки, участвующие в формировании как врожденного, так и приобретенного иммунитета действуют посредством продукции цитокинов.

В патогенезе коморбидной формы АГ на фоне ХОБЛ среди цитокинов особый интерес вызывает IL-6, IL-10 и TNF-а, на что имеются многочисленные ссылки в научной литературе [69, 72].

IL-6 представляет собой многофункциональный цитокин, который играет как провоспалительную, так и противовоспалительную роль. Это одноцепочный фосфорилированный гликопротеин, состоящий из четырех пучков спиралей (A–D). Спирали A и B сливаются в одном направлении, тогда как C и D идут в противоположном направлении [134, 89].

Физиологическая роль IL-6 заключается в активации острофазовых реакций, в созревании В-лимфоцитов, в стимуляции синтеза и секреции

различных иммуноглобулинов. В сочетании с IL-1 он вызывает дифференцировку Т-клеток в цитолитические Т-клетки, которые дополнительно активируют естественные клетки-киллеры. Эти клетки-киллеры участвуют в механизмах, ответственных за специфические заболевания, связанные с воспалительными или иммунными изменениями в системе. Данный цитокин играет проатерогенную роль при сердечно-сосудистых заболеваниях. IL-6 вырабатывается макрофагами, лимфоцитами, эндотелиальными клетками, адипоцитами и скелетными мышцами. Механизм участия ИЛ-6 в развитии АГ, по данным ряда исследований, заключается в его воздействии на продукцию супероксидного анион-радикала и развитие ОС, а также IL-6 способствует росту лейкоцитов, в частности макрофагов, которые участвуют в инфильтрации эндотелия сосудов, повышают сосудистое сопротивление, И вызывают эндотелиальную дисфункцию, пролиферацию гладкомышечных клеток и увеличивают концентрацию Са2+ в гладкомышечные клетки, что, в итоге, приводит к вазоконстрикции [102, 117].

ТNF-а относится к мощным провоспалительным цитокинам и является инициатором развития воспаления и оксидативных сдвигов. Он относится к мембранным белкам с молекулярной массой 26 кДа и состоит из 233 аминокислот. После действия ФНО-конвертирующего фермента (ADAM17) (специфической металлопротеазы) происходит отщепление мембрано-связывающего фрагмента с образованием растворимой формы TNF-а с молекулярной массой 17 кДа (157 аминокислот). Активной формой белка является гомотример, теряющий активность при диссоциации субъединиц. Молекула ФНО образует бетаскладчатую структуру. Его патофизиологическое и патобиохимическое действие основано на том, что он стимулирует продукцию вазоактивных веществ в сосудах, что приводит к вазоконстрикции и, следовательно, к повышению артериального давления [136].

Современные исследования подтверждают значимость TNF-а в патогенезе АГ и развитии АГ на фоне различных коморбидных состояний [63, 124]. TNF-а индуцирует образование различных АФК, которые способствуют развитию ОС и, как следствие, возникновению сосудистой дисфункции [121, 109].

Интерлейкин-10 (ИЛ-10, IL-10) относится к противовоспалительным регуляторным цитокинам и является димерным белком, каждая субъединица которого состоит из 178 аминокислот. Он участвует в регуляции продукции таких цитокинов, как IL-1α, IL-1β, IL-6, IL-8, IL-12, фактора некроза опухоли (TNF-а) в активированных макрофагах и IFNγ. В исследование на моделях мышей с нокаутом ИЛ-10 и внутривенными введением ангиотениза II показано его роль в регуляции АД [103, 11].

Кроме того, было доказано, что ИЛ-10 предотвращает гипертензию у беременных мышей, нормализуя активированную материнскую иммунную систему [74].

1.3 Состояние ренин-ангиотензин-альдостероновой системы коморбидной формы артериальной гипертензии на фоне хронической обструктивной болезни легких

Одним из ключевых звеньев метаболических сдвигов в организме и патогенеза развития коморбидной формы АГ и ХОБЛ является нарушение регуляции РААС. Снижение уровня внутриканальцевого натрия, гипотензия в афферентных артериолах почечного клубочка и симпатическая активация влияют на синтез и высвобождение почками неактивного ренина. В кровотоке активируется ренин и, как следствие, это приводит к высвобождению ангиотензиногена и превращению его в ангиотензин 1 (АТ1). Далее, благодаря ангиотензинпревращающему ферменту (АПФ) АТ1 превращается в ангиотензин 2 (АТ2) [18].

AT2 является основным прогипертензивным медиатором, который приводит к поражению органов-мишеней путем активации иммунных клеток. Более того, лейкоцитарный лиганд-Р-селектин гликопротеин-лиганд-1 своздействует на эндотелий и опосредует выработку IL-17. Благодаря Psgl-1 повышается уровень воспалительных биомаркеров. Накопление иммунных клеток

приводит к дисфункции эндотелия и, как следствие, повышению АД. Кроме того, АТ2 способствует развитию эндотелиальной дисфункции вследствие вазомоторных изменений и миграции лейкоцитов [123].

- 1.4 Генетико-биохимические аспекты коморбидной формы артериальной гипертензии на фоне хронической обструктивной болезни легких
- 1.4.1 Роль полиморфизмов гена ACE в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

В последнее время несомненным является вклад генетической составляющей в развитии коморбидной формы АГ на фоне ХОБЛ. В ряде исследований был проведен анализ полиморфизма и уровней экспрессии генов, связанных с повышением АД. Показана роль полиморфизма генов, кодирующих компоненты РААС, ИС, систем АОЗ и биотрансформации ксенобиотиков в развитии АГ [126, 99].

АПФ (АСЕ) — это ключевой компонент РААС. Он катализирует превращение ангиотензина I в ангиотензин II, как указывалось выше. Ангиотензин II — это мощный вазопрессор и альдостеронстимулирующий пептид, который регулирует АД и водно-электролитный баланс. Так же АСЕ инактивирует сосудорасширяющий белок брадикинин. Ген *АСЕ* расположен на длинном плече 17-й хромосомы (17q23) (рисунок 5).

Полиморфизм данного гена влияет на экспрессию и активность продукта его экспрессии. Наиболее изученным полиморфизмом гена *ACE* является Alu Ins/Del rs4646994, в результате которого происходит инсерция или делеция (I/D) последовательности ДНК длиной 287 п.н. в интроне 16 гена *ACE*, что в свою

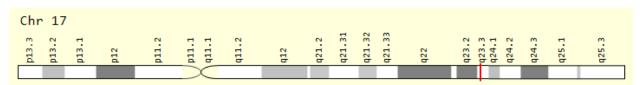


Рисунок 5 – Расположение гена ACE (www.genecards.org)

очередь определяет активность фермента АПФ. При наличии мутации (D/D) активность фермента АПФ увеличивается. Роль данного полиморфизма изучена при различных заболеваниях, включая ССЗ, ХОБЛ, бронхиальная астма, псориаз, инсульт и т.д. Особый интерес при этом представляет исследование полиморфного варианта данного гена у пациентов конкретных популяций с МФЗ и сочетанными (коморбидными) состояниями, в частности, в популяции жителей Краснодарского края. Наряду с этим, актуальным является комбинаторный анализ полиморфизма данного гена в совокупности с изучением полиморфизма других генов защитных и регуляторных систем [53, 2, 32].

1.4.2 Роль полиморфизмов гена SOD1 в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

Активную роль в работе системы АОЗ принимает фермент СОД. Ген SOD1 расположен на 21-й хромосоме (21q22.11) и имеет множество полиморфных форм (рисунок 6). Один из наиболее распространенных полиморфизмов гена SOD1 является -7958 G > A SOD1, rs4998557, который влияет на активность фермента. Мутация данного локуса гена приводит к снижению активности белкового продукта. В научной литературе описана связь данного полиморфизма с ИБС, сахарным диабетом, ожирением и другими заболеваниями [111, 47, 128].

Ко второй фазе биотрансформации ксенобиотиков относится группа ферментов GST и N-ацетилтрансфераз (NAT). GST катализируют реакцию конъюгации различных гидрофобных и электрофильных соединений с восстановленным глутатионом. Выделяют 8 основных классов фермента: GST – альфа (α), мю (μ), пи (ρ), тэта (ρ), каппа (ρ), сигма (σ), омега (σ) и зэта (σ).

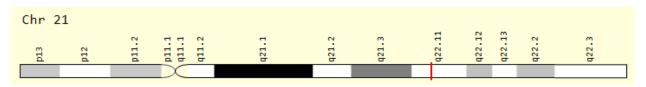


Рисунок 6 – Расположение гена SOD1 (www.genecards.org)

1.4.3 Роль полиморфизмов гена GSTP1 в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

Глутатион-S-трансфераза пи1 (GSTP1) кодируется геном GSTP1. Наибольшая экспрессия выявлена в лёгких, но также встречается и в других тканях. Ген GSTP1 расположен на хромосоме 11q13 и содержит 6 интронов и 7 экзонов (рисунок 7).

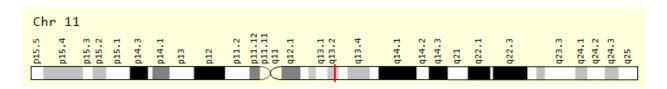


Рисунок 7 – Расположение гена GSTP1 (www.genecards.org)

GSTP1 принимает участие в ликвидации продуктов табачного дыма, которые оказывают токсическое действие, в том числе, и за счет развития ОС. Наибольший интерес изучения полиморфизма данного гена представляет у пациентов с ХОБЛ. Наиболее известными полиморфизмами гена GSTP1 являются -313A > G GSTP1, включающий мутацию экзона 5 и проявляющийся заменой аминокислоты изолейцина 105 на валин, и -341C > T GSTP1, включающая мутацию экзона 6 и проявляющийся заменой аминокислоты аланина 114 на валин, что приводит к изменению ферментативной активности. Так, наличие мутации данных генов приводит к значительному снижению активности GSTP1 [52, 58, 82].

Во многих исследованиях показана связь полиморфизм гена GSTP1 с риском развития XOБЛ. Выявлено, что аллель G полиморфизма гена -313A > G GSTP1 ассоциирована с повышенным риском развития XOБЛ [40].

1.4.4 Роль полиморфизмов гена NAT в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

Фермент NAT выполняет важную защитную функцию, участвуя в ацетилировании канцерогенов и других ксенобиотиков в процессе их биотрансформации. Выделяют несколько изоферментов NAT – NAT1, NAT2 NAT8, NAT9, NAT10 [27].

Ген NAT2 расположен на хромосоме 8 (8p21.3-23.1 и 8p22) и относится к высокополиморфным генам (рисунок 8). В научной литературе описано более сотни вариантов аллелей. В результате полиморфизма данного гена выделяют фенотипы быстрого, промежуточного и медленного ацетилирования. Наиболее интересным полиморфизмом гена NAT2 является -481C > T NAT2, rs1799929, при мутации которого происходит замена цитозина на тимин, что приводит к более медленному ацетилированию.

Рисунок 8 – Расположение гена NAT2 (www.genecards.org)

Данный полиморфизм достаточно хорошо изучен в фармакогенетике и онкологии, при этом практически не изучен у пациентов с ХОБЛ, АГ и их коморбидной формы [45]. Особый интерес представляет изучение проблемного генетического профиля по различным сочетаниям полиморфных вариантов генов основных защитно-адаптационных и регуляторных систем организма, которые могут стать фактором (основой) раннего прогнозирования и профилактики заболеваний разнообразного генеза. Последнее имеет важнейшее значение в 5П отношении развития направления В медицине Предиктивная (предсказательная); Профилактическая; Персонализированная; Партисипативная (когда пациент и врач работают в тандеме); Позитивная (где важны не только технологии, но и психологическое состояние пациента).

1.4.5 Роль полиморфизмов гена СҮРЗА4 в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

В развитии и степени выраженности ОС особую роль играет система биотрансформации ксенобиотиков. В работе системы биотрансформации ксенобиотиков выделяют три фазы. Основными участниками первой фазы биотрансформации является группа ферментов цитохрома Р450 (СҮР). Фермент СҮР 3A4 относится к монооксигеназному комплексу и принимает участие в биотрансформации фармакологических препаратов, стероидных соединений, холестерина и его производных. Данный фермент кодируется геном СҮРЗА4, который локализован на хромосоме 7q21.1 (рисунок 9).

Рисунок 9 – Расположение гена NAT2 (www.genecards.org)

Наиболее исследованным полиморфизмом гена СҮРЗА4 является -392А > G СҮРЗА4, который представляет собой точечную замену азотистых оснований – аденина (А) на гуанин (G) в положении 392, что оказывает влияние на каталитическую активность фермента и на экспрессионную активность гена, и, как следствие, на изменение скорости биотрансформации ксенобиотиков [50, 67].

1.4.6 Роль полиморфизмов гена CYP2C19 в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

Фермент CYP2C19 так же относится к семейству ферментов цитохрома P450, принимающий участие в метаболизме многих лекарственных средств и эндогенных веществ.

Ген CYP2C19 расположен на хромосоме 10q23.33 (рисунок 10).

Рисунок 10 – Расположение гена CYP2C19 (www.genecards.org)

Наиболее значимым и распространенным полиморфизмом гена CYP2C19 является вариант -681G > А CYP2C19. В результате данного полиморфизма происходит замена гуанина на аденин в положении 681 экзона 5, что приводит к образованию аберрантного сайта сплайсинга. В результате создания этого сайта происходит сдвиг рамки считывания мРНК и преждевременно создаётся стопкодон на 20 аминокислотных остатков раньше, что приводит к образованию более короткого и функционально неактивного белка. Наиболее изучен данный полиморфизм гена CYP2C19 в онкологии. Отмечена его связь с риском развития различного вида рака. При этом у пациентов с ССЗ тонкие особенности полиморфизма данного локуса практически не изучено [97, 70, 94].

1.4.7 Роль полиморфизмов гена IL 6 в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

При изучении полиморфизмов генов ИС в развитии коморбидной формы АГ на фоне ХОБЛ, выявлена связь некоторых полиморфных форм гена с изменением иммунного ответа организма и выраженностью воспалительной реакцией [108].

Ген IL 6 расположен на хромосоме 7p21 (рисунок 11).

В научной литературе описаны несколько полиморфизмов данного гена, которые влияют на уровень экспрессии. В промоторной области гена IL6

Рисунок 11 – Расположение гена IL 6 (www.genecards.org)

находятся несколько ключевых полиморфизмов: -572G/C, -597G/A, -634C/G, -1363G/T, -174G/C, модулирующих его экспрессию. SNP-полиморфизм -174 C > G гена IL 6 (rs1800795) является наиболее изученным и представляет собой точечную замену цитозина (С) на гуанин (А) в позиции -174 п.н. Известно, что генотип GG обычно связан с более высокими уровнями IL6, а генотип СС – с более низкими уровнями IL6 [109]. В различных мета-анализах показаны противоречивые данные о роли полиморфизма -174 C > G гена IL 6 в развитии АГ, в том числе и ее коморбидной формы АГ на фоне ХОБЛ, что требует дальнейшей дискуссии и дополнительного анализа [79, 59].

1.4.8 Роль полиморфизмов гена IL 10 в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

Ген IL 10 картирован на хромосоме 1q31-32, содержит четыре интрона и пять экзонов и занимает около 4,7 т.п.н. (рисунок 12).

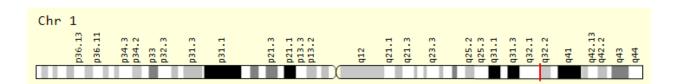


Рисунок 12 – Расположение гена IL 6 (www.genecards.org)

Описано несколько полиморфных вариантов данного гена, большая часть мутаций которого локализована в промоторной области. Наиболее распространенным являются SNP-полиморфизмы -1082 G/A, -592 C/A,

представляющие собой замены аденина (А) на гуанин (G) в -1082 п.н. (rs1800896) и цитозина (С) на аденин (А) в -592 п.н. (rs1800872), которые влияют на продукцию ИЛ-10. Известно, что аллель А полиморфизма гена -592 С/А IL10, а также аллель А полиморфизма гена -1082 G/A IL10 способствуют сниженной продукции IL10, что в свою очередь влияет на направленность иммунного ответа, своевременность и эффективность межклеточной сигнализации. Некоторые исследования показали противоречивые данные по ассоциации данных полиморфизмов с развитием АГ и ее коморбидных форм. Связь полиморфизмов гена IL 10 с развитием ССЗ, таких как АГ, достаточно хорошо исследована [79, 93, 46]. При этом значение полиморфизмы гена IL 10 у пациентов АГ и ее различными коморбидными формами остается малоизученным, что требует дальнейшего исследования.

1.4.9 Роль полиморфизмов гена TNF-а в развитии артериальной гипертензии, хронической обструктивной болезни легких и их коморбидной формы

Ген TNF-а локализован на коротком плече хромосомы 6 (6р21.33), относится к локусу генов главного комплекса гистосовместимости, имеет размер 2762 п.н. и содержит 4 экзона (рисунок 13).

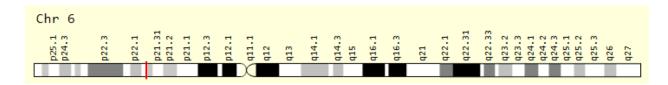


Рисунок 13 – Расположение гена TNF-а (www.genecards.org)

Описаны различные полиморфные варианты данного цитокина, влияющие на его экспрессию и уровень ИЛ. Полиморфизм -308 G > A TNF, rs1800629 находится в регуляторной области гена TNF α и представляет собой точечную

замену гуанина (G) на аденин (A). Известно, что, генотипы GA и AA -308G > A TNFα характеризуются повышенной транскрипционной активностью по сравнению с генотипом GG, что обуславливает более выраженный воспалительный ответ [60]. Во многих исследованиях показана связь данного полиморфизма с развитием коморбидной формы AΓ на фоне XOБЛ, но также остаются вопросы по отдельным популяционным группам и связью полиморфизма с тяжестью метаболических сдвигов [136, 71].

ГЛАВА 2.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

На проведение исследования получено разрешение этического комитета ФГБОУ ВО КубГМУ Минздрава России (протокол № 92 от 13.10.2020 г.). Набор участников для исследования проводился на базе двух медицинских учреждениях: ГБУЗ «Городская поликлиника № 25» МЗ КК и ГБУЗ «Краевая клиническая больница № 2» (пульмонологическое отделение). Все пациенты, включенные в исследование, были проинформированы и дали письменное согласие на участие, после ознакомления с условиями исследования.

Научно-экспериментальная часть работы выполнялась на базе специализированной лаборатории молекулярно-генетических исследований кафедры биологии с курсом медицинской генетики ФГБОУ ВО КубГМУ Минздрава России. В процессе исследования был осуществлен забор и проанализирован биоматериал 223 пациентов, проживающих на территории Краснодарского края и страдающих изучаемой категорией МФЗ.

2.1 Схема и этапы исследования

С целью выполнения исследования были выделены следующие этапы:

• На первом этапе были проанализированы литературные источники и данные базы NCBI (https://www.ncbi.nlm.nih.gov/gene) для отбора полиморфных локусов генов-кандидатов, которые могут быть связанны с нарушением гомеостатических показателей организма, формированием состояния ОС и эндотоксикоза и, как следствие, развитием различных МФЗ и коморбидных состояний. Изучены научные данные по ферментам системы АОЗ и

биотрансформации ксенобиотиков, а также маркерам СРО при МФЗ, факторам иммунного контроля и регуляторам АД.

На втором этапе осуществлен отбор пациентов и формирование групп исследования. Проведен анализ историй болезни, амбулаторных карт, результатов лабораторных и инструментальных исследований. Были отобраны пациенты, соответствующие исследования и подписавшие критериям проводимого добровольное информированное согласие на исследование. В исследования не были включены пациенты, имеющие следующие характеристики: отсутствие письменного информированного согласия больного на участие в исследовании, острые инфекционные заболевания, онкология различной локализации, профессиональные заболевания, вторичные формы АГ, левожелудочковая сердечная недостаточность стадии IIA и выше, неспособность понимать и осуществлять требования рекомендуемого протокола исследования, наличие противопоказаний К проводимым диагностическим процедурам, предусмотренным протоколом исследования.

Объем выборки составил 223 пациента с МФЗ. В первую группу вошли пациенты с АГ различных стадий, высокого и очень высокого риска (n=78), во вторую группу — пациенты с коморбидной формой АГ и ХОБЛ (n=62), в третью группу пациенты с ХОБЛ без АГ (n=22). Контрольную группу составили условно здоровые лица без какой-либо соматической патологии (n=61), сопоставимого с пациентами возраста.

- На третьем этапе проведено комплексное лабораторное исследование, для которого осуществлялся забор венозной крови, включенных в исследование пациентов: в пробирки с активатором свертывания для биохимических анализов, и в пробирки с ЭДТА КЗ для изучения эритроцитарных ферментов антиоксидантной системы и выделения ДНК с целью генотипирования.
- На завершающем, четвертом этапе научной работы была осуществлена обработка и детальный анализ экспериментальных данных, формирование выводов и практических рекомендаций.

2.2 Дизайн исследования

Дизайн исследования представлен на рисунке 14.

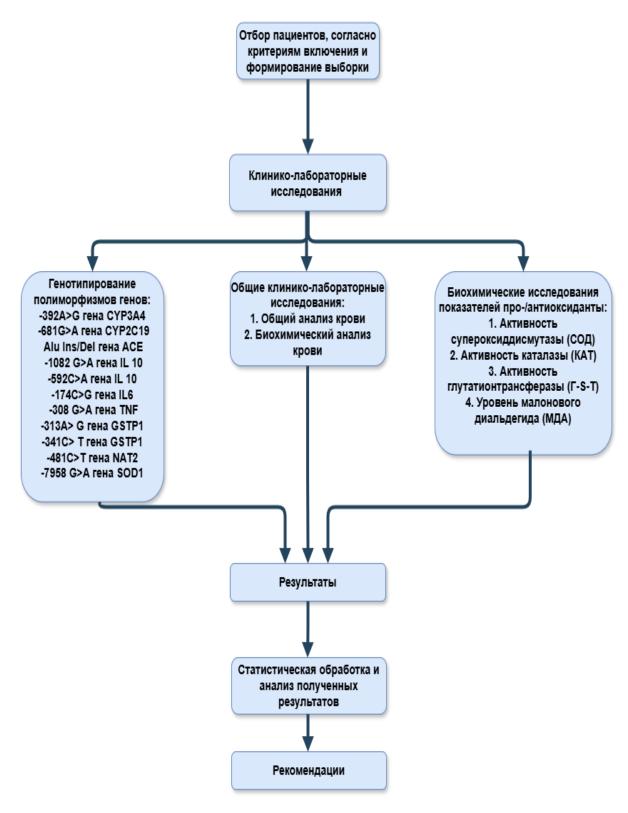


Рисунок 14 – Дизайн исследования

2.3 Клиническая характеристика исследуемых групп пациентов

В ходе исследования изучены планируемые показатели в отдельно выделенной условиями проведения наблюдения популяции жителей Краснодарского края.

Учитывая диагноз пациентов, были выделены 3 группы наблюдения и контрольная группа.

В первую группу вошли пациенты с АГ (n=78) различных стадий и степени заболевания, высокого и очень высокого риска, без ХОБЛ. Количество женщин в первой группе исследования составило 69.2 % по сравнению с мужчинами 30.8 %. Средний возраст в данной группе исследования составил 61 год.

Во вторую группу вошли пациенты с коморбидной формой АГ и ХОБЛ (n = 62) различных стадий и степени заболевания, высокого и очень высокого риска, а также различного фенотипа. Количество мужчин и женщин в этой группе исследования составило 77.4 % и 22.6 %. Средний возраст составил 64 года.

В третью группу вошли пациенты с ХОБЛ различного фенотипа, без АГ (n=22). Количество женщин (10) и мужчин (12), практически равное количество. Средний возраст пациентов составил 54 года.

Контрольную группу составили условно здоровые лица без какой-либо соматической патологии (n=61), а также без наличия этиологических факторов риска развития МФЗ, сопоставимых по возрасту с наблюдаемыми пациентами. Сравнительный анализ клинических характеристики и клинико-лабораторных показателей пациентов всех исследуемых групп представлен в таблице 1 и 2.

Таблица 1 – Сравнительная клиническая характеристика исследуемых групп

Ī	Показатель		1-я группа	2-я группа	3-я группа	Контрольная	
			(АГ)	(ХОБЛ+АГ)	(ХОБЛ без АГ)	группа	n
			абс.	абс.	абс.	абс.	p
				(% в группе)	(% в группе)	(% в группе)	
Ī	1	2	3	4	5	6	7
Ī	Тол	Мужчины	24 (30,8)	48 (77,4)	12 (54,5)	18 (29,5)	< 0.001
ľ	.10,1	Женщины	54 (69,2)	14 (22,6)	10 (45,5)	43 (70,5)	< 0.001

Окончание таблицы 1

1	2	3	4	5	6	7
Средний возраст, лет		61 (50–65)	64 (60–69)	54 (46–60)	39 (32–48)	< 0.001
	1 ст.	16 (19,5)	1 (1,6)	_	_	< 0.001
АΓ	2 ст.	51 (66,2)	27 (43,5)	_	_	
	3 ст.	11 (14,3)	34 (54,8)	_	_	
	1 ст.	_	_	_	_	< 0.001
ХОБЛ	2 ст.	=	11 (17,7)	14 (63,6)	_	
AODJI	3 ст.	_	37 (59,7)	6 (27,3)	_	
	4 ст.	_	14 (22,6)	2 (9,1)	_	
	Умеренный ССР	12 (14,3)	3 (4,8)	_	_	
Шкала SCORE	Высокий ССР	50 (64,9)	22 (35,5)	_	=	< 0.001
SCORE	Очень высокий ССР	16 (20,8)	37 (59,7)	_	_	

Примечание: р – уровень значимости между группами исследования.

Таблица 2 – Общие клинико-лабораторные показатели у исследуемых групп пациентов

Поморожни	1-я группа	2-я группа	3-я группа	Контрольная
Показатели	(АГ)	(ХОБЛ+АГ)	(ХОБЛ без АГ)	группа
1	2	3	4	5
СРБ,	2.08 (0.69, 3.41)	2.47 (0.70, 7.70)	0.87 (0.30, 3.60)	0.34
мг/л	***	***	***	(0.3, 0.50)
АЛТ,	10.55 (864, 19.00)	14.75 (11.80, 22.10)	19.05 (11.50, 30.00)	7.0
Ед/л	^^#**	^^**	#***	(5.0, 12.00)
ACT,	11.80 (10.1, 18.60)	17.85 (11.60, 22.10)	18.60 (15.40, 27.00)	6.8
Ед/л	^^#*	^^**	#***	(5.2, 13.60)
Глюкоза, ммоль/л	5.65 (5.16, 6.39) ##***	6.03 (5.20, 7.00) \$\$***	5.00 (3.80, 5.39) ##\$\$	4.4 (3.7, 4.80)
Креатинин,	73.90 (62.00, 82.00)	79.50 (69.10, 93.00)	84.00 (65.00, 97.00)	60.0
ммоль/л	***	***	***	(56.0, 63.00)
OXC,	5.43 (4.58, 6.22)	4.13 (3.7, 5.32)	4.70 (2.4, 5.90)	3.3
ммоль/л	^^^**	**	**	(2.8, 4.23)
ЛПВП,	1.34 (1.03, 1.54)	1.17 (1.05, 1.28)	1.1 (0.98, 1.30)	1.12
ммоль/л	^^^##**	^^^	##	(1.0, 1.32)

Окончание таблицы 2

ЛПНП,	3.17 (2.23, 3.82)	2.04 (1.3, 2.86)	2.91 (2.06, 2.90)	2.2
ммоль/л	^^**	^^^	2.81 (2.06, 3.80)	(2.0, 2.41)
ΤΓ,	1.51 (1.04, 2.23)	0.83 (0.5, 1.42)*	1.27 (0.7, 1.73)**	0.5
ммоль/л	^^^**	0.03 (0.3, 1.42)	1.27 (0.7, 1.73)	(0.3, 0.71)
Мочевина,	4.90 (4.30, 7.00)	5.80 (3.50, 8.30)	4.10(3.40, 5.30)	3.5
ммоль/л	***	***	*	(3.2, 3.80)
Эритроциты	4.80 (4.40, 5.16)	4.81 (4.40, 5.28)	4.96(4.62, 5.44)	4.2
*10^ ¹² /л	**	**	**	(3.9, 4.37)
Гемоглобин,	13.60 (12.90, 15.00)	15.05 (13.50, 16.00)	14.90(14.40, 15.70)	12.4
г/л	**	**	**	(11.1, 13.00)
Лейкоциты	6.45 (5.30, 8.10)	8.08 (5.98, 10.68)	6.61 (5.10, 7.70)	5.1
*10^9/л	***	***	***	(5.0, 5.30)
Тромбоциты	243.00	248.50	238.00	220
*10^9/л	(217.00, 287.00)**	(181.00, 281.00) **	(148.00, 296.00) **	(200, 234.00)

Примечание: * — различия между группой исследования и группой контроля при p < 0.05 (** — при p < 0.01, *** — при p < 0.001); ^ — различия между группой исследования $XOE\Pi + A\Gamma$ и группой $A\Gamma$ при p < 0.05 (^^ — при p < 0.01, ^^ — при p < 0.001); # — различия между группой исследования $XOE\Pi$ без $A\Gamma$ и группой $A\Gamma$ при p < 0.05 (## — при p < 0.01, ### — при p < 0.001); \$ — различия между группой исследования $XOE\Pi$ с артериальной гипертензией и группой $XOE\Pi$ без $A\Gamma$ при p < 0.05 (\$\$ — при p < 0.01, \$\$\$ — при p < 0.001).

2.4 Методика забора образцов крови и метод выделения ДНК

В качестве материала для биохимического и молекулярно-генетического исследований использовали цельную венозную кровь в объеме 5–7 мл. Забор осуществлялся в пробирки с ЭДТА КЗ и пробирки с активатором свертывания.

Оценка показателей активности ферментов систем AO3 и биотрансформации ксенобиотиков и уровень МДА проводилась в образцах крови пациентов, забранной в пробирку с ЭДТА – K3 в объеме 5–7 мл.

Далее из образцов цельной периферической крови осуществляли выделение геномной ДНК из лейкоцитарной фракции с применением набора «ДНК-экспресс-

кровь» («Литех»). После подготовки необходимого количества микропробирок-Эппендорф в каждую из них вносили по 1 мл образца цельной крови, предварительно перемешав их при наличии расслоения. Далее закрывали пробирки и проводили 5-минутное центрифугирование при 3000 об/мин в стандартных температурных условиях. После центрифугирования образцы крови фракционировали на плазму и форменные элементы с тонким слоем лейкоцитов. После аккуратного удаления пипеткой плазмы, образцы подвергали замораживанию при −20 °C (в морозилке) до полного замораживания форменных элементов (в течение 1 ч.) с последующим размораживанием содержимым пробирок при комнатной температуре. Далее в каждую пробирку добавляли реактив «ДНК-экспресс-кровь» в объеме эквивалентному объему оставшейся жидкости (форменные элементы + плазма). Затем содержимое тщательно перемешивали на вортексе и инкубировали в термостате при 99 °C в течение 25 минут. После этого, пробирки центрифугировали при 10000 об/мин в течение 15 сек. Полученный супернатант аккуратно отбирали и использовали в качестве геномной ДНК для дальнейших исследований.

2.5 Методы, используемые для определения про-/антиоксидантного статуса крови у исследуемых групп пациентов

Оценка про-/антиоксидантного статуса крови у исследуемых групп пациентов и лиц контрольной группы проводилась с помощью исследования активности ферментов системы АОЗ (СОД, КАТ, Г-S-Т) и измерению уровня промежуточного продукта СРО – МДА в эритроцитах.

Первоначально был получен гемолизат эритроцитов из набранных образцов крови по следующей методики: образцы крови подвергали центрифугированию (3000 об./мин., 10 мин.) с последующим удалением плазмы. Полученный осадок эритрцитов промывали три раза холодным физиологическим раствором (0.9 % NaCl)

с промежуточным центрифугированием (3000 об./мин., 5 мин.). К полученной в результате очищенное эритроцитарной массе в равном объеме добавляли дисциллированную воду и 0.4 мл объема четыреххлористого углерода. Затем пробирку закрывали и встряхивали в течение 10 мин.

После этого пробирку оставляли в холодильнике в течение 1 часа. Затем образец центрифугировали при 10000 об./мин в течение 30 мин., для осаждения стромы. Полученный таким способом гемолизат сливали в стоящую пробирку и использовали в дальнейшей работе.

Уровень МДА определяли по методике Стальной И.Д., Гаришвили Т.Г. [42], которая основана на измерении его концентрации путем добавления тиобарбитуровой кислоты (ТБК) в присутствии хлоруксусной кислоты. МДА вступает в реакцию с тиобарбитуровой кислотой в кислой среде при высокой температуре, образуя окрашенный комплекс розового цвета и имеющий максимум поглощения при длине волны 532 нм. Оптическую плотность образующегося окрашенного комплекса измеряли спектрофотометрически на спектрофотометре Picodrop Pico200 (рисунок 15).

Рисунок 15 – Спектрофотометр Picodrop Pico200

Расчёт концентрации МДА в пробе, после реакции с ТБК и получения данных спектрофотомерии проводили с учетом калибровочного графика и коэффициента молярной экстинкции МДА $(1,56\times10^5)$ с перерасчетом на 1 л гемолизата и выражали в мкМоль/л.

Активность СОД исследовали спектрофотометрически по методике Сироты Т.В [38], основанной на способности СОД ингибировать реакцию аутоокисления адреналина в щелочной среде. Определение активности СОД в крови пациентов осуществляли в три этапа:

- 1. Инициирование аутоокисления адреналина. С это целью в спектрофотометрическую кювету вносили 2 мл 0.2 М карбонатного буфера (рН 10.65), добавляли 100 мкл 0,1 % раствора препарата адреналина, интенсивно перемешивали и немедленно помещали в спектрофотометр (рисунок 14) и, затем, измеряли величину оптической плотности при длине волны 347 нм (волновое число 28.8) через 15, 30 секунд в течение 3–5 мин.
- 2. Определение величины активности СОД. В кювету с карбонатным буфером добавляли исследуемый образец и затем вносили раствор адреналина, перемешивали и регистрировали увеличение оптической плотности при 347 нм в течение 3-5 минут. В контрольную пробу, против которой проводится измерение, также добавляли сопостовимое количество образца, но не вносится адреналин. Активность СОД в гемолизатах эритроцитов пациентов рассчитывали по степени ингибирования гемолизатом скорости аутоокисления адреналина. Измерение СОД происходило в течение 10 минут с фиксированием оптической плотности каждые 30 секунд. Реакция считалась завершенной при отсутствии изменений в оптической плотности анализируемой смеси.
- 3. Расчет ферментативной активности СОД проводили, используя соответствующую формулу и выражали в условных единицах (ус. ед.):

СОД(активность) =
$$\frac{E1-E2}{E1}$$
 * 100 %,

где E1 – оптическая плотность опытной пробы; E2 – оптическая плотность контрольной пробы.

Измерение активности КАТ в гемолизате проводилось с помощью спектрофотометра по методике Королюка М.А. и соавт. [18].

Методика основана на том, что перекись водорода образовывает стойкий окрашенный комплекс с солями молибдена. Таким образом, КАТ, которая присутствует в биоматериале, принимает участие в разрушении перекиси водорода, а неразложившейся перекись водорода связываться с молибдатом аммония. Следовательно, чем выше активность КАТ, тем больше перекиси водорода расщепляется в биологическом материале, что приводит к менее интенсивной окраске экспериментальных растворов по сравнению с контролем.

Для оценки активности КАТ использовали единицы измерения нмоль $H_2O_2/M\Gamma$ Hb, рассчитывая показатель по формуле:

$$C = \left(\frac{\Delta E * V \pi p}{\varepsilon 0 * l * t * V bios * Chb}\right) * 1000,$$

где ΔE – разница оптических плотностей (Еопыт – Еконтроль); Vпр – общий объем пробы в кювете (л); Vbios – объем внесенного биосубстрата; $\epsilon 0$ – коэффициент миллимолярной экстинкции комплекса H_2O_2 с молибдатом аммония; I – длина оптического пути (см); Chb – концентрация гемоглобина (г/л); 1000 – доп. коэффициент пересчета из мМоль в нМоль.

Активность Г-S-T определяли согласно методике Карпищенко А.И. [20], в основе которого лежит реакция восстановленного глутатиона с 1-хлор-2,4динитробензолом в щелочных условиях, приводящих к образованию устойчивого хромогенного конъюгата желто-зелёного пвета. максимальный поглощения которого регистрируется при длине волны 420 нм. Методика проведения анализа активности Г-S-T включала следующие этапы: первоначально в кювету спектрофотометра вносили 1,5 мл раствора 2 мМ глутатиона и 0,1 мл исследуемого гемолизата. Далее реакцию инициировали добавлением 1,5 мл 2 мМ раствора 1-хлор-2,4-динитробензола. В контрольном образце гемолизат заменяли эквивалентным объемом воды. Оптическую плотность измеряли при длине волны (λ) 340 нм, используя воду в качестве контроля, непосредственно после начала реакции и спустя 3 минут. Для определения ферментативной активности Г-S-Т

использовали следующую формулу расчета с учетом коэффициента молярной экстинкции образующегося продукта $9,6\cdot10^3~{\rm M}^{-1}{\rm cm}^{-1}$, степени разведения и времени инкубации. Результаты рассчитывали по формуле и выражали в мкмолях в 1 мин на 1 г гемоглобина в исследуемом образце гемолизата:

$$A = \frac{\frac{\Delta E}{t} * V \text{общ} * 21 * 10^{3}}{9600 * V_{\text{пробы}} * Hb},$$

где A — показатель ферментативной активности; ΔE — изменение оптической плотности за время измерения, t — время измерения (мин.); 21 — фактор разведения эритроцитов в пробе; 9600 — коэффициент молярной экстинкции глутатион-S-конъюгатов; 10^3 — коэффициент для пересчета активности фермента Моль в мМоль; Hb — гемоглобин; Vобщ — суммарный объем реакционной смеси (мл); Vпробы — объем вносимой пробы гемолизата (мл).

2.6 Методы, используемые для генотипирования полиморфизмов генов системы биотрансформации ксенобиотиков, антиоксидантной защиты, иммунного контроля и ренинангиотензин-альдостероновой системы

С целью определения генетических вариантов исследуемых локусов был применён метод полимеразной цепной реакции (ПЦР-анализ). Для его реализации, на первом этапе исследования, проводили выделение нуклеиновой кислоты (ДНК) из цельной крови с использованием готового набора реагентов «ДНК-экспресс кровь» («Литех», Россия) и, далее, проводили генотипирование, используя наборы производства НПФ «Литех». Состав набора включал:

- 1) реакционную смесь АЛЛЕЛЬ 1;
- 2) реакционную смесь АЛЛЕЛЬ 2;
- 3) разбавитель;

- 4) Таq-полимераза;
- 5) минеральное масло,

где АЛЛЕЛЬ1 представляет собой нуклеотидную последовательность до возникновения мутации (замены, делеции или инсерции) в указанной позиции, АЛЛЕЛЬ2 представляет собой нуклеотидную последовательность (аллель) после возникновения мутации (замены, делеции или инсерции) в указанной позиции.

Молекулярно-генетический анализ полиморфизмов генов -392A > G гена CYP3A4, -681G > A гена CYP2C19, Alu Ins/Del гена ACE, -1082 G > A гена IL 10, -592 C > A гена IL 10, -308 G > A гена TNF выполняли методом ПЦР-анализа с помощью амплификатора «Rotor-Gene Q» в режиме реального времени (рисунок 16).

Рисунок 16 – Амплификатор «Rotor-Gene Q»

Протокол проведения ПЦР-анализа состоял из следующих этапов:

- исследуемые ДНК-образцы размораживали, перемешивали и центрифугировали;
- подготавливали и расставляли необходимое количество пробирок, объемом 0.2 мл (по две пробирки на каждый ДНК-образец для параллельного анализа аллельных вариантов, одна пробирка для варианта аллель 1, а вторая для варианта аллель 2);

- размораживали комплект реагентов для проведения ПЦР-анализа за 30 мин. до изготовления рабочей амплификационной смеси;
- приготавливали рабочие амплификационные смеси (расчет на 1 пробу): разбавитель (17.5 мкл), реакционная смесь (2.5 мкл), краситель SYBR Green (0.2 мкл), термостабильная ДНК-полимеразы (0.2 мкл) (вносили в строго последнюю очередь).

Таким образом для каждого ДНК-образца готовили 2 амплификационных смеси: 1-я — для детекции аллельного варианта 1 и 2-я — аллель 2. После внесения Таq-полимеразы смеси тщательно перемешивали, используя пипетирование. ПЦР-пробирки идентифицировали маркировкой. На следующем этапе в ПЦР-пробирки вводили по 20 мкл аллель-специфичные смеси и после этого добавляли по 5 мкл. ДНК-образца в пробирку с аллель-1-специфичной смеси и отдельно в пробирку с аллель-2-специфичной смеси. Завершали этап формированием отрицательного и положительного контролей. В отрицательный контроль вместо ДНК-образца вносили 5 мкл разбавителя в оба варианта реакционной смеси и положительный контрольный образец так же вносили 5 мкл в оба типа реакционной смеси.

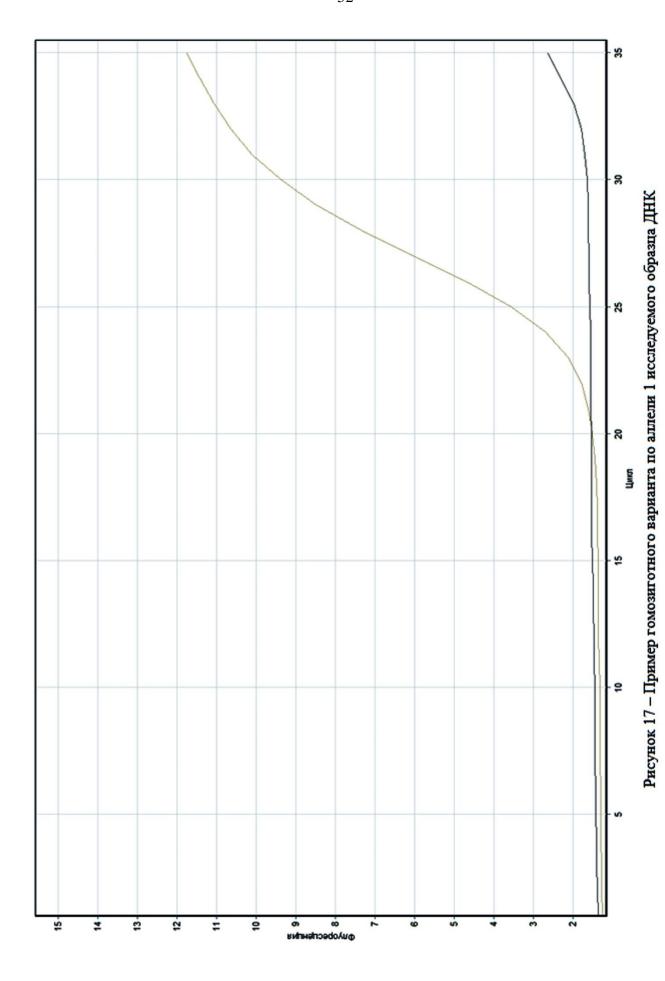
Все образцы центрифугировали (3000 об/мин), после чего размещали в термоциклере Rotor-Gene Q (рисунок 16) для проведения параллельной амплификации с двумя парами аллель-специфичных праймеров. Параметры, используемые для амплификации указаны в таблица 3.

Таблица 3 – Параметры амплификации

T, C°	время	циклов
93°	1 мин	1
93°	10 сек	
60°	10 сек	35
72°	20 сек	

Продукты амплификации детектировались аппаратурой в каждом цикле в автоматическом режиме.

В результате анализа с использованием специальной программы Rotor-gene 6000 (версия 1.8.17.5, www.corbettlifescience.com) регистрировали кривые накопления флуоресцентного сигнала в соответствии с каналом детекции.


Интерпретацию результатов проводилась по следующим критериям:

- положительный результат определялся, если значение FAM Ct образца было менее 27;
 - отрицательный результат, если значение FAM Ст образца было выше 30.

Полученные данные позволяли интерпретировать результат в трех вариантах: гомозиготный генотип по аллели 1 (рисунок 17), гетерозиготный генотип (рисунок 18) и гомозиготный генотип по аллели 2 (рисунок 19).

Молекулярно-генетический анализ полиморфных локусов -313A > G гена GSTP, -341C > T гена GSTP1, -481C > T гена NAT2, -7958 G > A гена SOD1, -174C > G гена IL 6 проведено с помощью метода ПЦР-анализа на оборудовании «Терцик» с последующей электрофоретической детекцией.

Первоначально, с целью проведения амплификации подготавливали и идентифицировали необходимое число пробирок, объемом 1,5 мл, равное числу ДНК-образцов плюс отрицательный контроль. На каждый образец предназначалось 2 пробирки (1-я пробирка — Аллель 1, 2-я — Аллель 2). Далее комплект реагентов для 20–30 ПЦР-анализа размораживали за минут до приготовления амплификационной смеси и тщательно перемешивали вортексированием. Для каждой анализируемой пробы из компонентов набора готовили два типа аллельспецифичных смесей. Состав из расчета на 1 пробу включал: 17,5 мкл разбавителя, 2,5 мкл реакционной смеси (отдельно для аллель1 и для аллели 2), 0,2 мкл Taq-полимеразы (добавляли в последнюю очередь). После финального внесения Тад-полимеразы, смесь аккуратно перемешивали, используя пипетирование. Далее рабочие амплификацонные смеси, в объеме 20 мкл вносили в подготовленные пробирки. В каждую пробирку вносили 25 мкл минерального масла и затем, под масленый слой, вносили 5 мкл анализируемой ДНК в пробирку с рабочей аллель-1специфичной смеси и в пробирку с рабочей аллель-2-специфичной смеси. Для отрицательного контроля в оба типа смесей вносили разбавитель (5 мкл). Далее пробирки центрифугировали (3-5)секунд, 3000 об/мин) вортексной микроцентрифуге (Microspin FV-2400). После центрифугирования пробирки помещали в предварительно нагретый до +94 °C амплификатор «Терцик» и запускали стандартную программу амплификации (таблица 4).

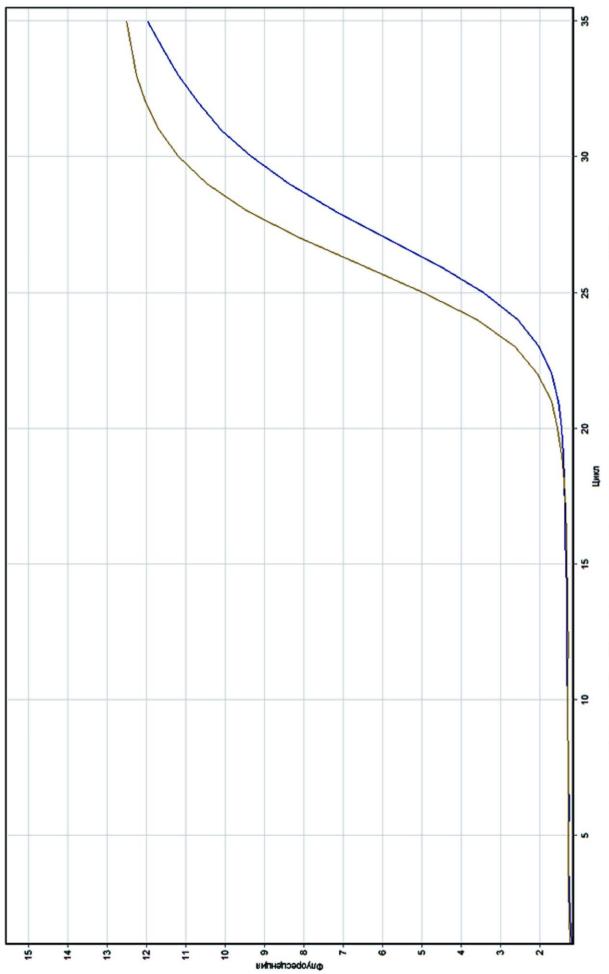


Рисунок 18 – Пример гетерозиготного варианта исследуемого образца ДНК

Рисунок 19 – Пример гомозиготного варианта по аллели 2 исследуемого образда ДНК

Таблица 4 – Программа амплификации

T, C°	время	циклов
94°	Pause	
93°	1 мин	1
93°	10 сек	
64°	10 сек	35
72°	20 сек	
72°	1 мин	1
10°	Storage	

Следующим этап выполняли детектирование продуктов амплификации. Электрофоретическую камеру заправляли ТАЕ буфером (приготовленный на дистиллированной воде разбавлением 50хТАЕ в 50 раз (рH = 8,3)) (рисунок 20).

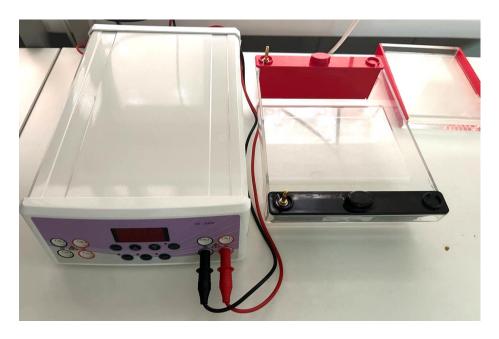


Рисунок 20 – Аппарат для электрофореза

В лунки агарозного геля вносили амплификат (10–15 мкл) в соответствие с нумерацией проб. Электрофоретическую камеру подключали к источнику питания и выставляли напряжение (10–15 В/См). Электрофоретическое разделение продуктов амплификации проводили в течение 17 мин (от катода (–) к аноду (+)), визуально отслеживая движение полосы красителя.

Затем гель вынимали и переносили его на стеклянную поверхность УФ-трансиллюминатора QUANTUM-ST4 1100-26M (рисунок 21).

Рисунок 21 – УФ-трансиллюминатора QUANTUM-ST4 1100-26M

После включения трансиллюминатор проводили визуализацию и интерпретацию полученных результатов (рисунок 22).

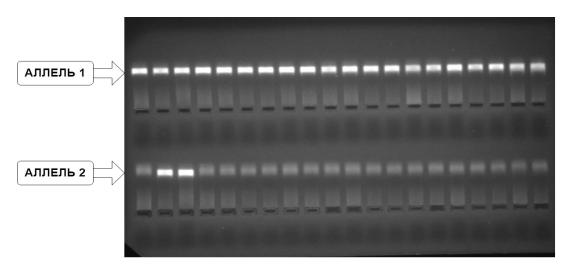


Рисунок 22 — Пример результатов генотипирования, проведенного с помощью метода ПЦР на оборудовании «Терцик» с последующей электрофоретической детекцией

В результате проведенного исследования были определены три варианта полиморфизма генов: гомозигота по аллелю 1, гетерозигота, гомозигота по аллелю 2.

2.7 Статистические методы анализа данных

Статистическая обработка полученных результатов выполнена В программной среде R версии 4.4.3 (https://cran.rproject.org/). Помимо стандартных функций R, в анализе использовались дополнительные пакеты rstatix и SNPassoc. Функционал пакета «SNPassoc» сфокусирован на статистической обработке и ассоциативном анализе генетических данных; пакет «rstatix» содержит разнообразные методы статистического анализа, включая параметрические и непараметрические подходы.

Категориальные данные описаны с указанием абсолютных чисел и процентных соотношений. Количественные показатели первоначально тестировались на соответствие нормальному распределению (критерий Шапиро-Уилка). Количественные показатели с нормальным распределением, описывались с помощью средних значений (M) и стандартных отклонений (SD). Для показателей, распределение которых отличалось от нормального, описывались с помощью медианы (Me) и значений нижнего и верхнего квартилей (Q1 – Q3). Далее с целью межгруппового анализа количественных показателей, имеющих нормальное распределение, использовали однофакторный дисперсионный анализ и post-hoc тест Тьюки. Для данных, имеющих ненормальное распределение, межгрупповой анализ проводил с помощью критерия Краскела-Уоллиса и posthос тест Данна (с поправкой Холма).

Сравнение частот генотипов между группами проводилось методом построения таблиц сопряженности с последующим применением критерия χ^2 или точного критерия Фишера. Величину и значимость различий оценивали путем расчета отношения шансов (ОШ) и его 95 % доверительного интервала (95 % ДИ). Порог статистической значимости был установлен на уровне р < 0.05.

Для проверки соответствия распределения генотипов закону Харди-Вайнберга применялся специализированный веб-инструмент (онлайн-калькулятор) (https://www.had2know.org/academics/hardy-weinberg-equilibrium-calculator-2-alleles.html).

Для оценки регуляторного потенциала исследуемых генов, которые предположительно были связаны с АГ, ХОБЛ и их коморбидной формой, а также с развитием патологическим метаболических сдвигов при данных патологиях использованы следующие современные открытые биоинформационные ресурсы:

- Базы данных экспрессии генов: Проект GTEx (Genotype-Tissue Expression, доступный на gtexportal.org).
 - Консорциум eQTLGen (https://eqtlgen.org/cis-eqtls.html).

Для изучения межбелковых взаимодействий и выявления ключевых патобиологических и патобиохимических путей применялась платформа STRING (https://string-db.org/), которая позволяет визуализировать протеин-протеиновые связи и идентифицировать наиболее значимые биологические пути, ассоциированные с изучаемыми генами.

ГЛАВА 3.

СОСТОЯНИЕ СИСТЕМЫ ПРО-/АНТИОКСИДАНТЫ У ИССЛЕДУЕМЫХ ГРУПП ПАЦИЕНТОВ С АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ, ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНЬЮ ЛЕГКИХ И ИХ КОМОРБИДНОЙ ФОРМОЙ

Состояние системы про-/антиоксиданты у исследуемых групп пациентов оценивали, используя методики измерения активности основных ферментов системы АОЗ и состояния процессов ПОЛ.

Среди наиболее показательных биомаркеров процессов ПОЛ выделяют МДА. В работе выявлены статистически значимые отличия в уровне МДА крови в 1-й и 2-й группе исследования в сторону повышения по сравнению с контрольной группой. В контрольной группе медиана показателя МДА была равна 5,15 мкМоль/л. Наибольший уровень МДА отмечен в группе пациентов с коморбидной формой АГ на фоне ХОБЛ (2-я группа), который составил 11,32 мкМоль/л, что по сравнению с контрольной группой выше на 119,8 % или 2,2 раза (р < 0,001). Полученный результат может свидетельствовать о выраженной активации СРО и ПОЛ у пациентов данной группы исследования и наличие сдвигов в системе про-/антиоксиданты в сторону активации первого звена. У пациентов 1-й группы (АГ без ХОБЛ) уровень МДА был равен 6,9 мкМоль/л, что на 34,0 % выше уровня контрольной группы (р < 0,001). В 3-й группе пациентов с хроническим ХОБЛ на фоне проводимой терапии уровень МДА был выше контрольных значений на 10,9 %.

Таким образов, на основании анализа полученных данных оценки состояния прооксидантного звена системы ПОЛ/АОЗ необходимо отметить, что у пациентов 1-й и 2-й группе отмечается стойкая активация процессов СРО в результате чего образуется большое количество промежуточных и конечных продуктов СРО, в частности МДА. Это сопровождается повышением уровня этих веществ в тканях и биологических жидкостях. По сравнению с контрольной группой повышение

уровня МДА у пациентов с АГ и АГ и ХОБЛ (коморбидная форма) в эритроцитах имело статистически значимые высокие значения (p < 0.05). При этом во 2-й группе пациентов с коморбидной формой АГ и ХОБЛ установлен наиболее высокий показатель МДА, что позволяет сделать вывод о том, что у данной группы пациентов уровень СРО и ПОЛ находится на наиболее высоком уровне и, соответственно, отмечается наличие более выраженных метаболических и патобиохимических сдвигов на организменном и клеточном уровне с развитием состояния стойкого высокого уровня ОС.

Защиту от агрессивного действия АФК и свободных радикалов осуществляют антиоксидантные ферменты. Выделяют несколько линий АОЗ. К первой линии относится ферменты семейства СОД. При анализе полученных результатов уровня СОД крови выявлено, что у пациентов 2-й и 3-й групп установлена активация данного фермента АОЗ по сравнению с группой контроля и изменения активности изучаемого фермента носят статистически значимый характер. Наибольший уровень СОД отмечен у пациентов 2-й группы исследования (с коморбидной формой АГ и ХОБЛ) и 3-й группы исследования (ХОБЛ без АГ), что может свидетельствовать о более выраженном напряжении ферментного звена системы АОЗ у данных пациентов. Медиана СОД в контрольной группе составила 69,51 ус.ед. У группы пациентов с ХОБЛ без АГ и с коморбидной формой АГ и ХОБЛ уровень СОД был в среднем на 12,4—12,6 % выше уровня контрольной группы и выше уровня СОД пациентов 1-й группы исследования (р < 0,001). Показатели имели относительно не большую, но статистически значимую разницу.

На фоне увеличения показателя СОД у пациентов 3-й группы исследования установлено более низкие показатели фермента системы детоксикации и АОЗ – Г-S-T по сравнению с 1-й, 2-й группами и группой контроля, имеющие статистически значимый характер (р < 0,001). Данные результаты могут свидетельствовать о снижении антиоксидантного потенциала этого компонента системы АОЗ, что может служить причиной менее эффективного обезвреживания продуктов СРО эндогенного происхождения и ксенобиотиков с прооксидантными свойствами. Уровень Г-S-T в 3-й группе наблюдаемых пациентов оказался на 29,0 % ниже относительно показателей контрольной группы (р < 0,001) и в

среднем на 23-24 % ниже пациентов 1 и 2-й групп (р < 0,05), что позволяет сделать предположение о более высоком уровне напряжения в системе АОЗ у результаты пашиентов 3-й группы. Кроме того, полученные ΜΟΓΥΤ свидетельствовать о том, что у пациентов с ХОБЛ имеет место нарушения в функционировании системы биотрансформации ксенобиотиков во вторую фазу детоксикации, непосредственным участником которой является Г-S-T. Как следствие, происходит избыточное образование и накопление в организме данной группы пациентов эндогенных и экзогенных токсикантов, обладающих патобиохимическими и патофизиологическими свойствами.

В результате анализа показателей активности фермента 2-й линии системы AO3 — KAT, статистически значимого отклонения ее значений относительно показателей группы контроля у исследуемых групп пациентов не выявлено, однако необходимо отметить некоторое снижение ее активности в крови (эритроцитах) наблюдаемых групп больных, в большей степени у больных 3 группы.

Таким образом, данные, полученные в результате проведенных исследований, в целом, могут свидетельствовать о более высоком напряжении в системе АОЗ у пациентов с ХОБЛ (особенно коморбидной формой с АГ), по сравнению с остальными группами пациентов и группой контроля. При снижении уровня активности КАТ могут накапливаться избыточные количества перекисных продуктов, представляющих угрозу для собственных клеток и тканей организма. Как известно, накопление H_2O_2 на клеточном уровне, особенно в эритроцитах и в крови в целом, может стать причиной образования другого более агрессивного представителя АФК — супероксидного анион-радикала в реакциях Хабер-Вейса и Фентона в присутствии свободных металлов переменной валентности.

Проведенные исследования позволили установить, что у всех наблюдаемых групп пациентов имеют место значительные сдвиги в системе про-/антиоксиданты с активацией процессов СРО и ПОЛ, что свидетельствует о выраженной прооксидантной нагрузке на организм больного. Первичные, промежуточные и конечные продукты ПОЛ, прежде всего МДА, обладают высокой реакционной способностью и доказанной мембрано- и цитотоксичностью. Кроме этого, продукты избыточной пероксидации биомолекул являются важной составной частью

синдрома эндогенной интоксикации, который тесно связан с синдромом ОС, развивающего на фоне дисбаланса в системе про-/антиоксиданты в сторону превалирования второго звена системы. Следует отметить, что более выраженные и значимые изменения баланса в системе про-/антиоксиданты выявлены у группы пациентов с коморбидной формой ХОБЛ (наиболее высокий уровень МДА).

У больных, длительное время страдающих ХОБЛ, и при наличии сопутствующих заболеваний, в частности АГ, устанавливается высокий уровень ПОЛ, иллюстрируемый показателем МДА, и отмечаются значимые отклонения в показателях ферментного звена системы АОЗ. Данные изменения могут быть объяснены наличием у данной группы больных хронического воспалительного процесса, нарушений гемодинамики, гипоксии и гипоэнергетических процессов в тканях, что является ведущим патобиохимическим и патогенетическим звеном развития ОС и эндогенной интоксикации. Показатели системы про-/антиоксиданты у исследуемых групп пациентов приведены в таблице 5 и на рисунках 23–26.

Таблица 5 – Показатели системы про-/антиоксиданты у исследуемых групп пациентов

Показатель	МДА	СОД	КАТ	Γ-S-T
Единицы измерения	мкМоль/л	ус.ед	нМоль H ₂ O ₂ /мг Hb	мМоль/мин/мг Hb
1-я группа (АГ)	6.90	70.30	35.10	36.20
	(5.70, 0.86)	(61.90, 76.50)	(30.94, 40.12)	(28.81, 43.45)
	***^	^^^###		#
2-я группа	11.32	78.10	37.73	36.67
(ХОБЛ+АГ)	(6.56, 14.03)	(69.19, 86.87)	(34.46, 42.83)	(27.45, 42.72)
	***^\$\$\$	***^^	\$\$	\$
3-я группа	5.71 (3.95,	78.26	29.8	27.61
(ХОБЛ без АГ)	9.24)	(70.71, 80.73)	(27.45, 42.72)	(14.43, 36.44)
		***###	\$\$	***#\$
Контрольная	5.15	69.51	38.03	38.90
группа	(4.09, 6.49)	(63.98, 78.58)	(30.69, 46.92)	(31.11, 46.09)

Примечание: * — различия между группой исследования и группой контроля при p < 0.05 (** — при p < 0.01, *** — при p < 0.001); ^ — различия между группой исследования $XOE\Pi + A\Gamma$ и группой $A\Gamma$ при p < 0.05 (^^ — при p < 0.01, ^^^ — при p < 0.001); # — различия между группой исследования $XOE\Pi$ без $A\Gamma$ и группой $A\Gamma$ при p < 0.05 (## — при p < 0.01, ### — при p < 0.001); \$ — различия между группой исследования $XOE\Pi$ с артериальной гипертензией и группой $XOE\Pi$ без $A\Gamma$ при p < 0.05 (\$\$ — при p < 0.01, \$\$\$ — при p < 0.001).

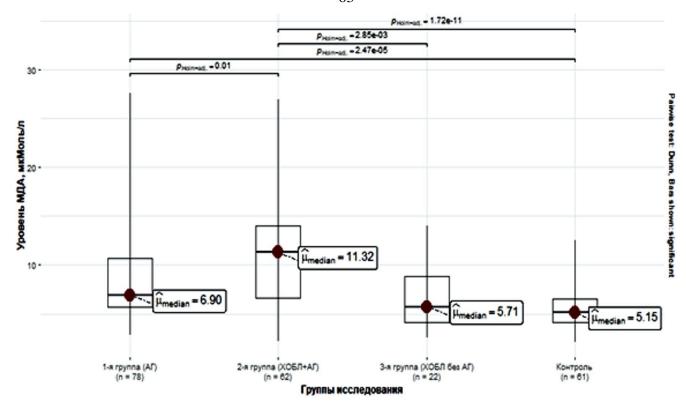


Рисунок 23 – Уровень МДА, мкМоль/л у исследуемых групп пациентов

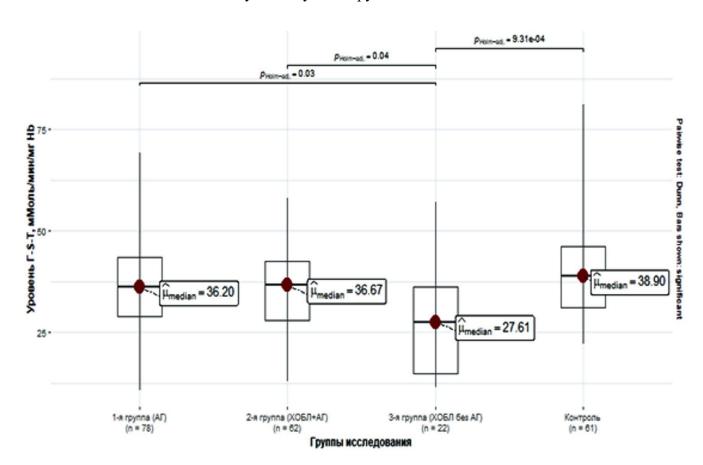


Рисунок 24 — Уровень активности Г-S-T, м Моль/мин/м
г Hb у исследуемых групп пациентов

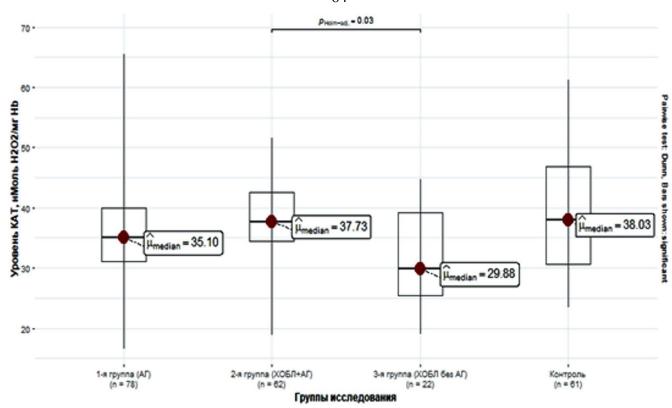


Рисунок 25 – Уровень активности КАТ, нМоль H2O2/мг Hb у исследуемых групп пациентов

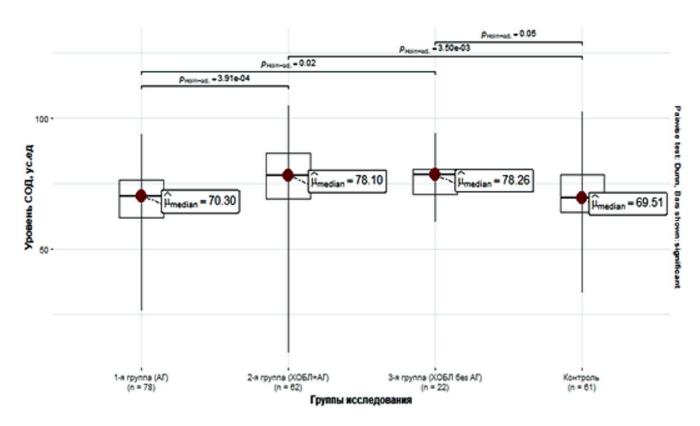


Рисунок 26 – Уровень активности СОД, ус.ед у исследуемых групп пациентов

В проведенном нами исследовании подтверждено, что реакция системы АОЗ проявляется в изменении активности ее ферментного звена, при этом зачастую наблюдаются разнонаправленные изменения активности отдельных ферментов в зависимости от стадии, длительности и тяжести заболевания, в результате чего усиливается проксиданная нагрузка на организм.

Выявлено, что уровень активности СОД у исследуемых групп пациентов (АГ+ХОБЛ, ХОБЛ без АГ) был повышен, активность Г-S-T и КАТ снижена, что может приводить к дополнительному образованию определенных форм АФК, поскольку при функционировании СОД образуется перекись водорода, в обезвреживании которой участвует ферменты семейства глутатиона и КАТ, чья сниженная активность может вызывать проблемы в этих процессах (таблица 5, рисунок 23-26).

Г.ЛАВА 4.

ОСОБЕННОСТИ ПОЛИМОРФИЗМА ГЕНОВ ОТДЕЛЬНЫХ КОМПОНЕНТОВ ИММУННОЙ СИСТЕМЫ, СИСТЕМЫ БИОТРАСФОРМАЦИИ КСЕНОБИОТИКОВ, АНТИОКСИДАНТНОЙ ЗАЩИТЫ И РЕНИН-АНГИОТЕНЗИНАЛЬДОСТЕРОНОВОЙ СИСТЕМ У ИССЛЕДУЕМЫХ ГРУПП ПАЦИЕНТОВ

4.1 Характеристика полиморфизмов генов отдельных компонентов иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и ренин-ангиотензин-альдостероновой систем

С целью понимания механизмов связи выбранных исследуемых полиморфных локусов генов с фенотипом заболевания и их влияние на метаболические сдвиги при изучаемых патологиях, первоначально был проведен *in silico* анализ. Данный метод анализа включает в себя изучение с помощью специальных баз данных характера мутации, региона расположения гена, влияния мутации на экспрессию гена, кодирующего белка, а также взаимодействия продуктов исследуемых генов в биологических путях.

Основная характеристика исследуемых полиморфных локусов генов компонентов иммунной системы: -174 C > G IL 6, -1082 G > A IL 10, -592 C > A IL 10, -308 G > A TNF, системы биотрансформации ксенобиотиков: -481C > T NAT2, -681G > A CYP2C19, -392A > G CYP3A4 (1A/1B), AO3: -313A > G GSTP1, -341C > T GSTP1, -7958 G > A SOD1 и компонента PAAC: ACE Alu Ins/Del I > D, описана с помощью базы данных сайта NCBI Gene и NCBI SNP (www.ncbi.nlm.nih.gov/snp), которая содержит информацию о месте расположения однонуклеотидных замен (SNP), характере мутации, информацию

об аллелях, функциональные аннотации (т.е. влияние мутации на структуру и функцию белка или на регуляторные элементы) (таблица 6).

Таблица 6 – Характеристика исследуемых однонуклеотидных полиморфных вариантов

Ген	SNP	Хромосомная	Регион	Аллели				
1 cm	Sivi	позиция	расположения	7 KJIJICJIPI				
Компоненты иммунной системы								
IL6	rs1800795	7:22727026	интрон	C/G				
IL10	rs1800896	1:206773552	интрон	G/A				
IL10	rs1800872	1:206773062	интрон	C/A				
TNF	rs1800629	6:31575254	Межгенное пространство	G/A				
	Сис	гема биотрансформации	и ксенобиотиков	-				
CYP2C19	rs4244285	10:94781859	экзон	G/A				
CYP3A4	rs2740574	7:99784473	межгенное	A/G				
C1F3A4			пространство	A/G				
NAT2	rs1799929	8:18400484	экзон	C/T				
Компоненты АОЗ								
GSTP1	rs1695	11:67585218	экзон	A/G				
GSTP1	rs1138272	11:67586108	экзон	C/T				
SOD1	rs4998557	21:31662579	интрон	G/A				
	Компоненты РААС							
ACE	rs4646994	17:63.48	интрон	I/D				

На следующем этапе оценивалось влияния исследуемых нами полиморфных вариантов генов на экспрессию и на регуляторный потенциал с помощью анализа информации баз Genotype-Tissue Expression (GTEx) данных (http://www.gtexportal.org/) и eQTLGen (https://eqtlgen.org/cis-eqtls.html). GTEx Portal содержит сведения крупномасштабных исследованиях экспрессии генов и особенности влияния различных полиморфизмов генов в тканях организма. eQTLGen, в свою очередь, содержит данные об экспрессии генетических полиморфизмов в крови (eQTL). Информация, представленная в указанных базах данных, позволяет сделать выводы влиянии полиморфизмов 0 функционирование гена, структуру кодирующего белка и возможные изменения их функционала, а также оценить возможное влияние на выраженность метаболических сдвигов при различных заболеваниях.

Изучение данных проекта GTEх Portal показало, что среди них отсутствуют сведения о влиянии полиморфизма гена -174 C > G IL 6, rs1800795 на экспрессию IL6 во всех тканях, но обнаружено, что данный полиморфизм оказывает влияние на экспрессию гена IL6-AS1 в легких, аорте, коронарных артериях, в сердце и в крови. IL6-AS1 — это ген, продуктом которого является длинная некодирующуя РНК, которая играет регуляторную роль в экспрессии гена IL-6. Генотип СС полиморфизм гена -174 C > G IL 6, rs1800795 приводит к повышение экспрессии IL6-AS1 и тем самым стабилизирует уровень самого IL6 за счет подавления его экспрессии, а генотип GG наоборот приводит к понижению экспрессии IL6-AS1 (рисунок 27), что может привести к повышенной экспрессии IL6.

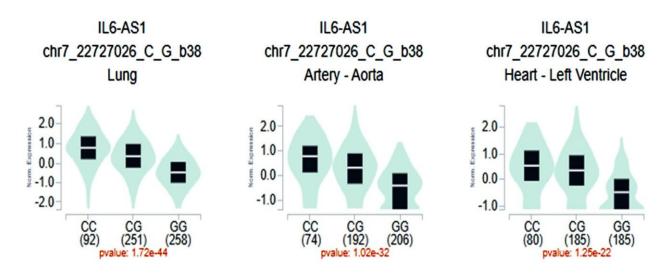


Рисунок 27 — Влияние полиморфизм гена -174 C > G IL 6, rs1800795 на экспрессию гена IL6-AS1 (http://www.gtexportal.org/)

С целью объективной оценки влияния полиморфизма гена -174 C > G IL 6, rs1800795 на его экспрессию дополнительно была проанализирована научная литература в отношении имеющихся в данной области исследований. Выявлено, что при генотипе СС отмечается более низкий уровень базальной экспрессии IL 6 (т.е. в состоянии покоя, при отсутствии воспаления), чем при генотипе GG, чем при генотипе GG. Однако, в условиях развития острой воспалительной реакции генотип СС обуславливает значительное усиление экспрессии IL 6 [95, 49, 118].

В связи с тем, что на порталах GTEх и eQTLGen отсутствуют данные о влиянии полиморфизмов гена -1082 G > A IL 10, rs1800896 и -592 C > A IL 10, rs1800872 на экспрессию IL10, нами была дополнительно проанализирована

научная литература в отношении влияния генотипов полиморфизмов гена IL 10 на экспрессию IL10. Выявлено, что генотип AA полиморфизмов rs1800896 (-1082 G > A гена IL10) и rs1800872 (-592 C > A гена IL10) ассоциирован со сниженной экспрессией гена. Напротив, генотипы GG (rs1800896) и CC (rs1800872) коррелируют с повышенным уровнем его экспрессии [88, 120].

Дальнейший анализ *in silico* полиморфных вариантов интерлейкинов показал, что данные о влиянии полиморфизма гена -308 G > A TNF на экспрессию в отдельных тканях в базе данных GTEx отсутствуют, но имеются данные портала eQTLGen о влиянии полиморфизма гена TNF на экспрессию в клетках крови, где указано, что в моноцитах аллель A ассоциирована с повышенной экспрессией TNF ($P = 1.2 \times 10^{-5}$) (https://eqtlgen.org/cis-eqtls.html).

Кроме того, опубликованы различные клинические исследования, где показано, что генотип GA и генотип AA ассоциирован с повышенной экспрессией гена TNF по сравнению с генотипом GG [135, 116].

Полиморфные варианты гена -313A > G GSTP1, rs1695, по данным портала GTEx, экспрессируется в легких, сердце и артериях, при этом аллель A относится к референсному аллелю, а аллель G к альтернативному, однако уровень экспрессии в зависимости от генотипов в тканях различен. В легких и в сердце генотип GG данного типа полиморфизма приводит к увеличению экспрессии GSTP1, а генотип AA к уменьшению экспрессии, а в артериях наоборот генотипа GG приводит к уменьшению экспрессии GSTP1, а генотип AA к увеличению экспрессии (рисунок 28).

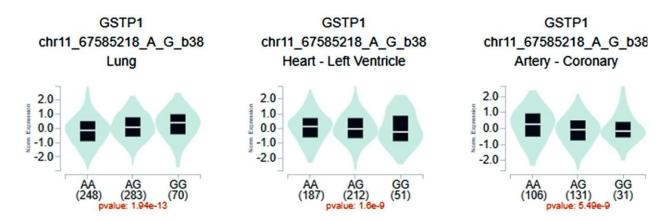


Рисунок 28 — Влияние полиморфизма гена -313A > G GSTP1, rs1695 на экспрессию (http://www.gtexportal.org/)

Полиморфизм гена -341С > Т GSTP1, rs1138272 по данным портала GTEx, оказывает влияние на экспрессию только в легких и в артериях. Аллель С относится к референсному аллелю, а аллель Т к альтернативному. В легких гетерозиготный генотип СТ данного полиморфизма приводит к увеличению экспрессии GSTP1, а генотип СС к уменьшению экспрессии. Данные о влияние генотипа ТТ на экспрессию отсутствуют, т.к. подобный вариант генотипа редко встречается в изученных популяциях (рисунок 29).

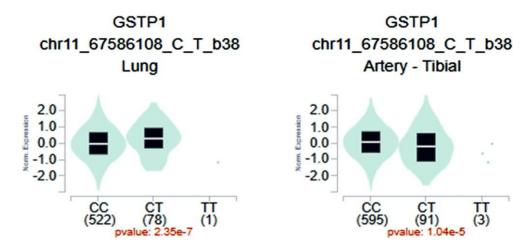


Рисунок 29 — Влияние полиморфизма гена -341C > T GSTP1, rs1138272 на экспрессию (http://www.gtexportal.org/)

Генотип AA полиморфизма гена -7958 G > A SOD1, rs4998557, по данным портала GTEx, характеризуется повышенной экспрессией SOD1 в легких, генотип GG — пониженной, а для гетерозиготного генотипа GA характерна промежуточный уровень экспрессии (рисунок 30).

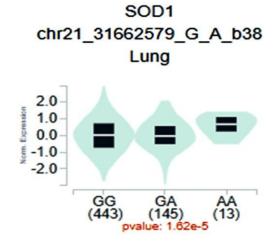


Рисунок 30 — Влияние полиморфизма гена -7958 G > A SOD1, rs4998557 на экспрессию (http://www.gtexportal.org/)

Полиморфизм гена -681G > A CYP2C19, rs4244285, по данным портала GTEx, оказывает виляние на экспрессию CYP2C19 в печени. Уровень экспрессии выше при наличии генотипа GA, по сравнению с генотипом GG. Данные об уровне экспрессии при наличии генотипа AA отсутствуют ввиду незначительной встречаемости в популяции (рисунок 31).

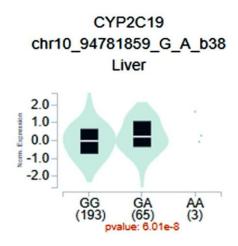


Рисунок 31 — Влияние полиморфизма гена -681G > A CYP2C19, rs4244285 на экспрессию (http://www.gtexportal.org/)

В базах данных GTEx Portal и eQTL не представлены материалы по полиморфным вариантам гена -392A > G CYP3A4 (1A/1B), rs2740574, -481C > T NAT2, rs1799929 и ACE Alu Ins/Del I > D, rs4646994, поэтому для того, чтобы оценить их влияние на экспрессию, изучены данные, имеющиеся в доступной литературе.

В исследовании Saiz-Rodríguez M продемонстрирована связь генотипа GG полиморфизма гена -392A > G CYP3A4 (1A/1B), rs2740574 со снижением экспрессии CYP3A4, а генотипа AA – с увеличением экспрессии [77].

Поскольку полиморфизм гена -481C > Т NAT2, rs1799929 находится в экзоне, т.е кодирующей части, то варианты генотипов данного полиморфизма влияют на структуру белка, тем самым воздействуя на активность фермента. Для генотипа ТТ характерно снижение активности фермента NAT2, а для генотипа СС – увеличение активности [115, 129, 51].

По данным различных исследований показано влияние полиморфизма гена ACE Alu Ins/Del I > D, rs4646994 на уровень экспрессии и активность фермента.

Генотип DD связан с наибольшей экспрессией гена *ACE* и повышенной активностью фермента в плазме (на 50 % выше, чем у ІІ-генотипа), что в дальнейшем приводит к наиболее выраженной вазоконстрикции. Генотип ІІ, в свою очередь, характеризируется наименьшей экспрессией *ACE* и более низкой активностью фермента [57, 132].

На следующем этапе исследований с применением онлайн-сервиса STRING (https://string-db.org/) была изучена взаимосвязь белков исследуемых нами полиморфизмов генов в метаболических путях. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) объединяет данные и инструменты для анализа белково-белковых взаимодействий и функциональных связей между генами/белками, основываясь на информации из различных источников, включая экспериментальные исследования и научные публикации.

В результате скрининга исследуемых нами генов с помощью данного сервиса выделены несколько белок-белковых взаимодействий, представляющих набольший интерес в развитии ОС и в развитии групп заболеваний таких как АГ, ХОБЛ и их коморбидной формы (рисунок 32).

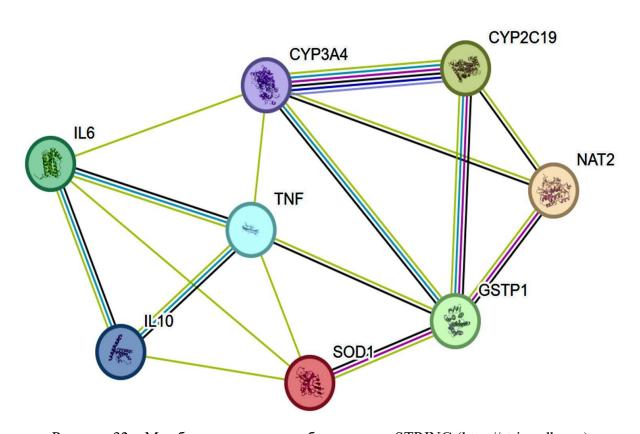


Рисунок 32 — Межбелковые связи по базе данных STRING (http://string-db.org)

Узлами на рисунке 31 являются белки исследуемых генов (IL6, IL10, TNF, SOD1, GSTP1, NAT2, CYP2C19, CYP3A4). Наличие вероятной связи показано линиями: фиолетовые линии характеризуют взаимодействия, доказанные экспериментальными данными; зелеными показаны взаимодействия, описанные в статьях; синие — предсказаны на основе гомологий; желтые линии показывают взаимосвязь на основании базы данных по метаболическим путям (KEGG, Reactome); красными и оранжевыми — на основании коэкспресии генов и расположения в геноме.

Полученные результаты показывают, что в построенной сети реализуются множество межбелковых взаимодействий и, исходя из группировки, можно выделить 2 кластера. В первый кластер входят гены иммунной системы (IL10, IL6 и TNF) и AO3 (SOD1), во второй кластер – гены системы биотрансформации ксенобиотиков (CYP3A4, CYP2C19, GSTP1, NAT2).

Функциональная аннотация исследуемых генов, направленная на установление их потенциальной роли в биологических путях, была проведена посредством дополнительных функций базы данных STRING (https://string-db.org/). По итогам анализа идентифицированы основные пути, ассоциированные с функцией данных гено и которые могут быть наиболее значимы в развитии патологических метаболических сдвигов при АГ, ХОБЛ и коморбидной форме АГ на фоне ХОБЛ (таблица 7).

Таблица 7 — Виды биологических путей в соответствии с базой данных Gene Ontology (https://geneontology.org/)

№	Функциональная классификация Gene Ontology (GO)	Вид биологического пути	Гены, задействованные в пути	FDR
1	2	3	4	5
1	GO:0009410	Ответ на ксенобиотики	TNF, IL10, GSTP1, SOD1, CYP2C19, CYP3A4, NAT2	< 0.0001
2	GO:0006805	Процесс метаболизма ксенобиотиков	GSTP1, NAT2, CYP2C19, CYP3A4	0.00042
3	GO:0097237	Клеточный ответ на токсическое вещество	TNF, GSTP1, SOD1	0.0032

Окончание таблицы 7

1	2	3	4	5
4	GO:2000377	Регуляция метаболизма АФК	TNF, GSTP1, SOD1	0.0032
5	GO:1903209	Положительная регуляция гибели клеток, вызванной ОС	TNF, SOD1	0.0242
6	GO:0050727	Регуляция воспалительной реакции	TNF, IL6, IL10, SOD1, GSTP1	< 0.0001
7	GO:0001817	Регуляция продукции цитокинов	TNF, IL6, IL10, SOD1, GSTP1	0.00013
8	GO:0002694	Регуляция активации лейкоцитов	TNF, IL6, IL10, SOD1	0.00054

Примечание: FDR – уровень значимости с поправкой FDR в отношении аннотированных генов исследованной биологической функции.

4.2 Распределение генотипов полиморфизмов генов системы биотрансформации ксенобиотиков и антиоксидантной защиты у исследуемых групп пациентов и их соответствие равновесию Харди-Вайнберга

Проведенный выше анализ показывает, что различие генотипов исследуемых нами полиморфизмов генов может по-разному оказывать влияние на развитие того или иного фенотипа заболевания, а также на выраженность патологически направленных метаболических процессов у исследуемых пациентов.

В этой связи следующий этап исследований заключался в ассоциативном анализе исследуемых полиморфизмов генов у наблюдаемых групп пациентов (таблица 8).

В результате рассмотрения полиморфизмов генов I фазы системы биотрансформации ксенобиотиков в изучаемых группах выявлено, что генотип 1А/1В, для которого характерно умеренной снижение экспрессии СҮРЗА4,

увеличивал риск развития ХОБЛ, так как статистически значимо чаще встречался у пациентов во 2-й (ХОБЛ+АГ) и 3-й (ХОБЛ без АГ) группах исследования по сравнению с 1-й группой (АГ) исследования (р < 0.001, χ^2 15.329, ОШ = 4.911; 95 % ДИ: 2.133–11.305).

Таблица 8 — Распределение генотипов полиморфизмов генов AO3 у исследуемых групп и группы контроля

Ген/ID	Генотип	1-я группа (АГ)	2-я группа (ХОБЛ+АГ)	3-я группа (ХОБЛ без АГ)	Контрольная группа
1	2	3	4	5	6
	1A/1A	68 (87.2 %)	36 (58.1 %)	12 (54.5 %)	33 (54.1 %)
-392A > G CYP3A4	1A/1B	10(12.8 %)**^^#	26 (41.9 %)^^^	10 (45.5 %)#	25 (41 %)
(1A/1B)	1B/1B	0 (0 %)	0 (0 %)	0 (0 %)	3 (4.9 %)
	pHWE	0.5452	0.0367	0.1677	0.5261
	GG	53(67.9 %)	42(67.7 %)	14(63.6 %)	38(62.3 %)
-681G > A	GA	22(28.2 %)	17(27.4 %)	6(27.3 %)	17(27.9 %)
CYP2C19	AA	3 (3.8 %)	3 (4.8 %)	2 (9.1 %)	6 (9.8 %)
	pHWE	0.708	0.4661	0.2944	0.0712
	AA	36 (46.2 %)	9 (14.5 %)	2 (9.1 %)	14 (23 %)
-313A > G	AG	38(48.7 %)##^^	35 (56.5 %)^^	18 (81.8 %)##	43 (70.5 %)
GSTP1	GG	4 (5.1 %)^	18 (29 %)*	2 (9.1 %)	4 (6.6 %)*
	pHWE	0.1298	0.1859	0.0028	0.0005
	CC	56(71.8 %)	29 (46.8 %)	6 (27.3 %)	0 (0 %)
-341C > T GSTP1	СТ	19(24.4 %) ###^^**	26(41.9 %) ^^**	12(54.5 %) ###**	55 (90.2 %)
OSILI	TT	3 (3.8 %)#^***	7 (11.3 %)^	4 (18.2 %) #	6 (9.8 %)
	pHWE	0.4016	0.7499	0.639	0

	CC	20(25.6 %)	17(27.4 %)	8 (36.4 %)	6 (9.8 %)
-481C > T	CT	46 (59 %)	34 (54.8 %)	12 (54.5 %)	48 (78.2 %)
NAT2	TT	12 (15.4 %)	11 (17.7 %)	2 (9.1 %)	7 (11.5 %)
	pHWE	0.0899	0.3989	0.4023	0
	GG	31 (39.7 %)	39 (62.9 %)	8 (36.4 %)	18 (29.5 %)
-7958 G >	GA	35 (44.9 %)	22 (35.5 %)\$**	14 (63.6 %) \$	39 (63.9 %)
A SOD1	AA	12 (15.4 %) ^^	1 (1.6 %)	0 (0 %)	4 (6.6 %)
	pHWE	0.6848	0.2819	0.0286	0.0085

Примечание: *- различия между группой исследования и группой контроля при p < 0.05 (**- при p < 0.01, ***- при p < 0.001); $^-$ различия между группой исследования $XOE\Pi+A\Gamma$ и группой $A\Gamma$ при p < 0.05 ($^-$ при p < 0.01, $^-$ при p < 0.001); # различия между группой исследования $XOE\Pi$ без $A\Gamma$ и группой $A\Gamma$ при p < 0.05 (# при p < 0.01, ## при p < 0.05); # при p < 0.05 (# при p < 0.05) (# при p < 0.05) (# при p < 0.05); # при p < 0.05 (# при p < 0.01); # при p < 0.05 (# при p < 0.01); # при p < 0.01); # при #

Фермент СҮРЗА4, который кодирует ген СҮРЗА4, участвует в метаболизме полициклических ароматических углеводородов, в частности, бензпирена – основного компонента табачного дыма, являющегося фактором риска развития ХОБЛ. Наличие генотипа 1А/1В приводит к замедлению метаболизма бензпирена, в результате чего в бронхах накапливаются токсические вещества. При этом для данного генотипа характерно снижение базального образования АФК, т.е. при отсутствии какого-либо стимула (курение), но значительное увеличение образования АФК при индукции, т.е. курении, что может служить триггером развития ОС.

При исследовании полиморфизма гена -681G > A CYP2C19 не выявлено статистически значимых различий полиморфных генотипов между группами наблюдения.

Изучение полиморфизма генов ферментов II фазы детоксикации позволило установить, что генотип AG полиморфизма гена -313A > G GSTP1, для которого характерно умеренное увеличение экспрессии в легких и в сердце, но при этом за счет замены аминокислоты изолейцина на валин способствует более низкой активности фермента Г-S-T, так же ассоциирован с риском развития XOБЛ, так как в 1.6 раз чаще встречался в 3-й группе исследуемых пациентов, чем в 1-й группе (р < 0.051, точный критерий Фишера 0.00173, ОШ = 8.526; 95 % ДИ: 1.846-39.391) и достоверно чаще во 2-й группе (р < 0.01, χ^2 9.297, ОШ = 3.684; 95 % ДИ: 1.555-8.731). При этом генотип АА, для которого характерно увеличение экспрессии GSTP1 в артериях и наличие высокой каталитической активности, был более характерен для пациентов 1-й группы исследования с АГ. Снижение активности фермента GSTP1, кодируемый геном GSTP1, приводит к нарушению конъюгации ксенобиотиков (токсичных метаболитов) с глутатионом (GSH), происходит замедлению скорости реакции и обезвреживание токсических метаболитов, в результате чего повышается их концентрация, в том числе и МДА, что приводит к повреждению легочного эпителия и, в конечном итоге, развитию и прогрессированию ХОБЛ.

Анализ полиморфизма гена -341С > Т GSTP1 показал, что генотип ТТ в 4.7 раза чаще встречается в 3-й (р < 0.05, точный критерий Фишера 0.00674, ОШ = 12.444; 95 % ДИ: 2.234–69.323) и в 1,6 раз чаще во 2-й группе исследования (р < 0.05, χ^2 4.895, ОШ = 4.506; 95 % ДИ: 1.084–18.733) по сравнению с 1-й группой. Согласно данным научной литературы, рядом исследований установлена связь накопления 4-гидроксиноненаля (4-HNE), как основного медиатора ОС, с развитием и прогрессированием ХОБЛ, в детоксикации которого и участвует GSTP1. Наличие генотипа ТТ приводит к понижению экспрессии GSTP1, за счет чего концентрация 4-HNE может увеличиваться у пациентов с ХОБЛ в 3–4 раза, способствуя деградации эластина и развитию эмфиземы [107, 125, 6].

При изучении полиморфизма гена -481C > T *NAT2* не было выявлено статистически значимых различий между группами исследования.

Сравнительный анализ частоты генотипа АА полиморфизма -7958 G > A гена SOD1 показал его достоверно более высокую встречаемость в первой группе (15,4 %) относительно второй группы пациентов (р < 0.01, χ^2 10.127, ОШ = 15.097; 95 % ДИ: 1.860–122.526). В 3-й группе данный генотип не выявлен. При этом наибольшая частота встречаемости генотипа GA отмечена в 3-й группе исследования (63.6 %), генотип GG чаще выявлен во второй группе исследования (62.9 %) (таблица 8).

Как было описано выше, СОД является ключевым ферментом АОЗ, за счет преобразования супероксид-радикал (O_2^-) в менее опасные соединения. Полиморфизм гена -7958 G > A SOD1, находящийся в промоторной области гена, изменяет экспрессию гена SOD1 и активность SOD1 в эритроцитах, что может влиять на направленность реакции, которую катализирует SOD1. Для генотипа АА полиморфизм гена -7958 G > A SOD1, который чаще встречался в 1-й группе исследования (пациенты с $A\Gamma$ без ХОБЛ), характерно значимое снижение экспрессии и активности SOD1, а значит происходит замедление преобразования супероксида в менее опасные вещества и, как следствие, его накопление. В дальнейшем это приводит к тому, что супероксид-радикал реагирует с NO с образованием ONOO-, который, в конечном итоге, способствует развитию эндотелиальной дисфункции и $A\Gamma$ за счет вазоконстрикции и увеличения жесткости сосудистой стенки.

4.3 Распределение генотипов полиморфизма гена ACE у исследуемых групп пациентов и их соответствие равновесию Харди-Вайнберга

При изучении полиморфизма гена ACE Alu Ins/Del I > D, ответственного за образование важного фактора регуляции AД — ангиотензинпревращающего фермента ($A\Pi\Phi$, ACE), отмечены статистически значимые различия между группами исследования и контрольной группой (таблица 9).

Таблица 9 – Распределение генотипов полиморфизмов гена ACE у исследуемых групп и группы контроля

Ген	Геноти п	1-я группа (АГ)	2-я группа (ХОБЛ+АГ)	3-я группа (ХОБЛ без АГ)	Контрольная группа
	II	7 (9.0 %)	12 (19.4 %)	2 (9.1 %)	37 (60.7 %)
ACE Alu Ins /	ID	20 (25.6 %)***	35 (56.5 %) ***	8 (36.4 %) *	18 (29.5 %)
Del I > D	DD	51 (65.4 %)	15 (24.2 %) ^^^**	12 (54.5 %) *	6 (9.8 %)
	pHWE	0.0286	0.2998	0.6959	0.1105

Примечание: * — различия между группой исследования и группой контроля при p < 0.05 (**— при p < 0.01, *** — при p < 0.001); ^ — различия между группой исследования $XOE\Pi+A\Gamma$ и группой $A\Gamma$ при p < 0.05 (^^ — при p < 0.01, ^^ — при p < 0.001); # — различия между группой исследования $XOE\Pi$ без $A\Gamma$ и группой $A\Gamma$ при p < 0.05 (## — при p < 0.01, ### — при p < 0.001); \$ — различия между группой исследования $XOE\Pi$ с $A\Gamma$ и группой $XOE\Pi$ без $A\Gamma$ при p < 0.05 (\$\$ — при p < 0.01, \$\$\$ — при p < 0.001); рНWE — уровень значимости критерия χ 2 Пирсона при проверке гипотезы на соответствие наблюдаемого распределения генотипов ожидаемому при соблюдении равновесия Харди-Вайнберга.

Как видно из данных таблицы 9, Генотип DD в 6.8 раз чаще встречался в 1-й группе (р < 0.001, χ^2 54.965, ОШ = 38.51; 95 % ДИ: 12.441–119.207), в 2.5 раза чаще во 2-й группе (р < 0.001, χ^2 13.66, ОШ = 6.6; 95 % ДИ: 2.18–20.1) и в 5.7 раз чаще в 3-й группе пациентов (р < 0.05, Точный критерий Фишера 0.00015, ОШ = 39.0; 95 % ДИ: 4.723–322.073) по сравнению с контрольной группой. Генотип ID достоверно чаще встречался в 1-й группе (р < 0.05, χ^2 12.451, ОШ = 5.873; 95 % ДИ: 2.100–16.429), в 1.9 раз чаще во 2-й группе (р < 0.05, χ^2 17.689, ОШ = 5.995; 95 % ДИ: 2.526–14.230) и в 1.2 раз чаще в 3-й группе пациентов (р < 0.05, точный критерий Фишера 0.02094, ОШ = 8.667; 95 % ДИ: 1.395–53.848), по сравнению с контрольной группой. Учитывая полученные данные, можно предположить, что наличие генотипов ID и DD полиморфизма гена АСЕ Alu Ins/Del является одной из причин наиболее частого развития изучаемых МФЗ, прежде всего АГ и ее коморбидных форм.

4.4 Распределение генотипов полиморфизмов генов иммунной системы у исследуемых групп пациентов и их соответствие равновесию Харди-Вайнберга

В результате анализа распределения генотипов полиморфизма генов иммунной системы в наблюдаемых группах пациентов были выявлены следующие особенности (таблица 10).

Таблица 10 — Распределение генотипов полиморфизмов генов иммунной системы у исследуемых групп

Г	Г	1 (AF)	2-я группа	3-я группа	Контрольная
Ген	1 енотип	1-я группа (АГ)	(ХОБЛ+АГ)	(ХОБЛ без АГ)	группа
	CC	14 (17.9 %)	2 (3.2 %)	8 (36.4 %)	5 (8.2 %)
-174 C > G IL 6	CG	45(57.7 %)^^#	43 (69.4 %)^^\$	8 (36.4 %)#\$	35 (57.4 %)
-174 C > G IL 0	GG	19 (24.4 %)^	17 (27.4 %)^\$	6 (27.3 %)\$	21 (34.4 %)
	pHWE	0.1613	0.0002	0.211	0.0696
	GG	13 (16.7 %)	5 (8.1 %)	0 (0 %)	23 (37.7 %)
-1082 G > AIL 10	GA	36 (46.2 %)	32 (51.6 %)	6 (27.3 %)	28 (45.9 %)
-1002 G > ALL 10	AA	29 (37.2 %)#	25 (40.3 %)	16 (72.7 %)*#	10 (16.4 %)
	pHWE	0.748	0.2309	0.4589	0.1808
	CC	42 (53.8 %)	35 (56.5 %)	10 (45.5 %)	39 (61.9 %)
-592 C > A IL 10	CA	29 (37.2 %)	18 (29 %)	10 (45.5 %)	18 (28.6 %)
-372 C > A IL 10	AA	7 (9 %)	9 (14.5 %)	2 (9.1 %)	4 (9.5 %)
	pHWE	0.5426	0.02	0.8233	0.3479
	GG	57 (73.1 %)	28 (45.2 %)	18 (81.8 %)	46 (75.4 %)
-308 G > A TNF	GA	17(21.8 %)^^^	33(53.2 %)*^^^\$	4 (18.2 %)\$	14 (23 %)
300 G > A TIVE	AA	4 (5.1 %)	1 (1.6 %)	0 (0 %)	1 (1.6 %)
	pHWE	0.0929	0.0135	0.639	0.9559

Примечание: *- различия между группой исследования и группой контроля при p < 0.05 (**- при p < 0.01, ***- при p < 0.001); $^-$ различия между группой исследования $XOE\Pi+A\Gamma$ и группой $A\Gamma$ при p < 0.05 ($^-$ при p < 0.01, $^-$ при p < 0.01); $^+$ при p < 0.01; $^+$ при p < 0.01, $^+$ при p < 0.01; $^+$ при p < 0.01, $^+$ при p < 0.01; $^+$ при p < 0.05 ($^+$ при p < 0.01, $^+$ при p < 0.01); $^+$ при p < 0.01; $^$

В результате сравнения распределения генотипов полиморфизма гена -174 С > G IL 6 между исследуемыми группами отмечены статистически значимые различия. Генотип СG практически в 2 раза чаще встречался во 2-й группе пациентов (ХОБЛ+АГ) по сравнению с 3-й группой (ХОБЛ без АГ) пациентов (р < 0.05, точный критерий Фишера 0.00015, ОШ = 21.5; 95 % ДИ: 3.836-120.491) и в 1.5 раза чаще по сравнению с 1-й группой пациентов (АГ) (р < 0.05, χ^2 7.293, ОШ = 6.689; 95 % ДИ: 1.435-31.184) (таблица 10). Генотип СС во 2-й группе пациентов (ХОБЛ +АГ) встречался в 5 раз реже по сравнению с 1-й группой пациентов и в 10 раз реже по сравнению с 3-й группой пациентов, что может быть фактором более выраженного напряжения в иммунной системе, а, следовательно, и более выраженной воспалительной реакцией у пациентов с коморбидной формой АГ на фоне ХОБЛ, так как генотип СG предопределяет более выраженную экспрессию гена -174 С > G IL 6 и, соответственно, увеличивает уровень в организме ИЛ-6 и выраженность воспаления, а генотип СС менее выраженную экспрессию.

Соответственно, учитывая полученные данные, можно предположить, что носительство генотипов CG или GG полиморфизма гена -174 C > G IL 6 увеличивает риск развития коморбидной формы A Γ на фоне ХОБЛ в 1.5 раза и влияет на тяжесть течения.

При изучении распределения генотипов полиморфизма гена -1082 G > A IL 10 выявлено, что генотип AA достоверно чаще встречался в 3-й группе пациентов (ХОБЛ без АГ), по сравнению с контрольной группой (р < 0.05, точный критерий Фишера 0.00806, ОШ = 24.2; 95 % ДИ: 1.18–496) и в 2 раза чаще, чем в 1-й группе пациентов (АГ) (р < 0.05, точный критерий Фишера 0.01199, ОШ = 0.07; 95 % ДИ: 0.003–1.27).

Анализ распределения генотипов полиморфизма гена -592 C > A IL 10 не выявил статистически значимых различий в изучаемых группах пациентов и контрольной группы. Что касается распределения генотипов полиморфизма гена -308 G > A TNF установлено, что наибольшая частота встречаемости генотипа GA выявлена во 2-й группе пациентов (ХОБЛ+АГ). Данный генотип в 3 раза чаще

отмечен у пациентов 2-й группы, по сравнению с контрольной группой (р < 0,01, точный критерий Фишера 0.00974, ОШ = 4.714; 95 % ДИ: 1.412–15.744) и 3-й группой исследования (ХОБЛ без АГ) (р < 0,01, точный критерий Фишера 0.00532, ОШ = 5.304; 95 % ДИ: 1.606–17.516) и в 2.5 раза чаще, чем в 1-ой группе наблюдения (АГ) (< 0,001, χ^2 13.891, ОШ = 3.952; 95 % ДИ: 1.886–8.279). При этом генотип GG во 2-й группе пациентов (ХОБЛ+АГ) встречался практически в 2 раза реже по сравнению с группой контроля и остальными группами исследования

Полученные в ходе исследования отличия в распределение определенных полиморфных вариантов генов исследуемых систем в различных группах больных как отдельных заболеваний, так и их коморбидной формы представляют определенный интерес для формирования базы данных о генетических предикторах развития $M\Phi3$.

Для получения более значимых вариантов связи различных полиморфизмов индивидуальных генов и генных сетей с развитием тех или иных патологий необходимо расширить выборку в отдельных популяционных группах и проводить сравнительный анализ аналогичных исследований в других группах, что позволит более точно формировать алгоритм генетического исследования на выявление ранних предикторов развития МФЗ, что относится и к изучаемым патологиям.

ГЛАВА 5.

ПОКАЗАТЕЛИ СИСТЕМЫ ПРО-/АНТИОКСИДАНТЫ И КЛИНИКО-ЛАБОРАТОРНЫЕ ДАННЫЕ У ИССЛЕДУЕМЫХ ГРУПП ПАЦИЕНТОВ В ЗАВИСИМОСТИ ОТ ПОЛИМОРФИЗМА ИЗУЧАЕМЫХ ГЕНОВ

- 5.1 Особенности показателей системы про-/антиоксиданты и клиниколабораторные данные у пациентов 1-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ
- 5.1.1 Особенности клинико-лабораторных данных у пациентов 1-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ

Следующий этап исследования включал анализ показателей системы про-/антиоксидантов, клинико-лабораторных показателей у наблюдаемых групп пациентов в зависимости от полиморфизма генов иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и АСЕ.

В 1-й группе исследования (АГ без ХОБЛ) статистически значимые изменения биохимических показателей крови выявлены в зависимости от носительства генотипов полиморфизма гена -313A > G GSTP1. Учитывая то, что в нашей выборке количество носителей с мутантным генотипом GG полиморфизма гена -313A > G GSTP1 оказалось крайне мало для достоверной оценки их связи с биохимическими показателями, было принято решение объединить носителей мутантных генотипов данного полиморфизма гена с гетерозиготным генотипом AG.

Уровень АЛТ и АСТ (Ед/л) в биохимическом анализе крови у пациентов 1-й группы наблюдения находился в пределах референсных интервалов (< 41 Ед/л). Однако, необходимо отметить, что пациенты с носительством генотипа АА полиморфизма гена -313A > G GSTP1 имели статистически более низкие значения АЛТ и АСТ (Ед/л) по сравнению с генотипами АG+GG (р < 0,01) (таблица 10, рисунок 32, 33).

Полиморфизм гена -313A > G GSTP1, как уже было описано, влияет на активность фермента GSTP1, который участвует в процессах детоксикации ксенобиотиков и в функционировании системы АОЗ. Генотипы АС и GC данного полиморфизма характеризуются снижением активности фермента GSTP1, что приводит к нарушению процессов детоксикации и увеличению риска развития синдрома цитолиза. Так в некоторых исследованиях установлена взаимосвязь полиморфизма гена -313A > G GSTP1 с повреждением печени и развитием синдрома цитолиза [33, 34]. Биохимические показатели крови в зависимости от генотипов полиморфизма генов -313A > G GSTP1 у пациентов в 1-й группе исследования (АГ без ХОБЛ) представлены в таблице 11 и рисунках 33–34.

Таблица 11 — Биохимические показатели крови в зависимости от генотипов полиморфизма генов -313A > G GSTP1 у пациентов в 1-й группе исследования (АГ без ХОБЛ)

Поморожови	Генотипы			
Показатели —	AA, N = 36	AG + GG, N = 42		
СРБ, мг/л	2.56 (0.99, 3.78)	1.67 (0.64, 3.20)		
АЛТ, Ед/л	0.00 (0.00, 14.50)**	14.50 (0.00, 24.35)**		
АСТ, Ед/л	0.00 (0.00, 17.00)**	16.00 (0.00, 25.00)**		
Глюкоза, ммоль/л	5.74 (5.31, 6.33)	5.51 (5.12, 6.24)		
Среатинин, ммоль/л	72.50 (61.00, 80.00)	74.00 (64.00, 82.00)		
ОХС, ммоль/л	5.24 (4.48, 5.86)	5.55 (4.63, 6.60)		
ППВП, ммоль/л	1.42 (1.05, 1.60)	1.25 (1.03, 1.44)		
ІПНП, ммоль/л	3.18 (2.15, 3.67)	3.13 (2.50, 3.86)		
ГГ, ммоль/л	1.51 (1.07, 1.83)	1.55 (1.04, 2.29)		
Мочевина, ммоль/л	5.10 (4.25, 7.10)	4.85 (4.00, 6.80)		

Примечание: *- различия при p < 0.05, **- при p < 0.01, ***- при p < 0.001.

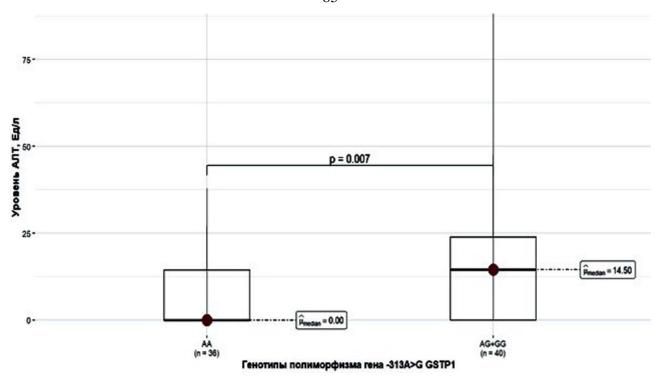


Рисунок 33 — Уровень АЛТ, Ед/л в зависимости от генотипов полиморфизма -313A > G GSTP1 у пациентов в 1-й группе исследования (АГ без ХОБЛ)

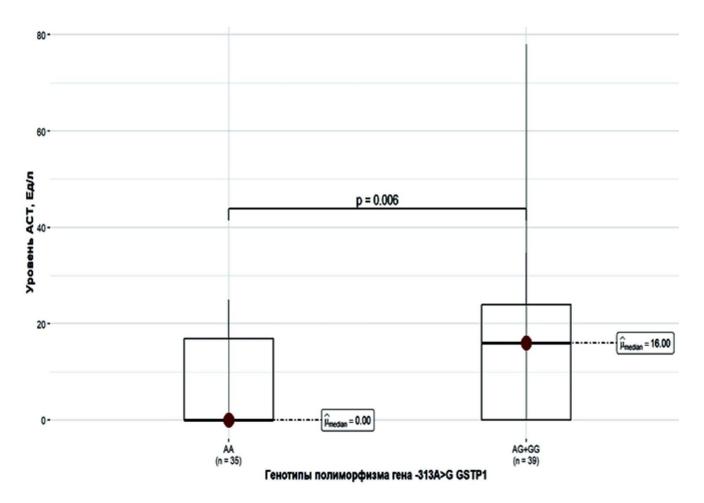


Рисунок 34 — Уровень АСТ, Ед/л в зависимости от генотипов полиморфизма -313A > G GSTP1 у пациентов в 1-й группе исследования (АГ без ХОБЛ)

Статистически значимые различия в клинико-лабораторных биохимических показателях и показателях общего анализа крови в зависимости от генотипов полиморфизма генов иммунной системы, системы биотрансформации ксенобиотиков и АОЗ у пациентов 1-й группы исследования не выявлены (кроме описанных выше).

5.1.2 Особенности показателей системы про-/антиоксиданты у пациентов 1-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ

Особенности показателей системы про-/антиоксиданты у пациентов 1-й группы (АГ без ХОБЛ) в зависимости от генотипов полиморфизма гена -174C > G IL 6 представлены в таблице 12 и на рисунке 35.

Таблица 12 — Показатели системы про-/антиоксидантны в зависимости от генотипов полиморфизма гена -174C > G IL 6 у пациентов в 1-й группе исследования (АГ без ХОБЛ)

Гоусовуун	N	МДА,	КАТ,	Г-S-Т,	СОД,
Генотип		мкМоль/л	нМоль H ₂ O ₂ /мг Hb	мМоль/мин/мг Hb	ус.ед
C/C	14	6.27 (5.70, 7.90)	39.35 ± 10.10	37.25 ± 7.38	62.31 ± 13.83^
C/G	45	7.12 (5.92, 12.06)	34.98 ± 7.43	38.19 ± 10.41##	68.35 ± 12.56
G/G	19	7.12 (5.64, 10.86)	33.45 ± 6.28	29.19 ± 12.33##	73.80 ± 9.98^

Примечание: * — различие между аллелью 1 и гетерозиготой при p < 0.05 (** — при p < 0.01, *** — при p < 0.001); ^ — различия между аллелью 1 и аллелью 2 при p < 0.05 (^^ — при p < 0.01, ^^ — при p < 0.001); # — различия между между аллелью 2 и гетерозиготой при p < 0.05 (## — при p < 0.01, ### — при p < 0.001).

В результате анализа показателей системы про-/антиоксиданты у пациентов 1-й группы наблюдения, в зависимости от генотипов полиморфизма гена

-174С > G IL 6, выявлено, что пациенты с носительством генотипа GG имеют статистически значимое снижение активности Γ -S-T по сравнению с генотипом CG (p < 0,01) и статистически значимое увеличение активности СОД по сравнению с генотипом CC (p < 0,05).

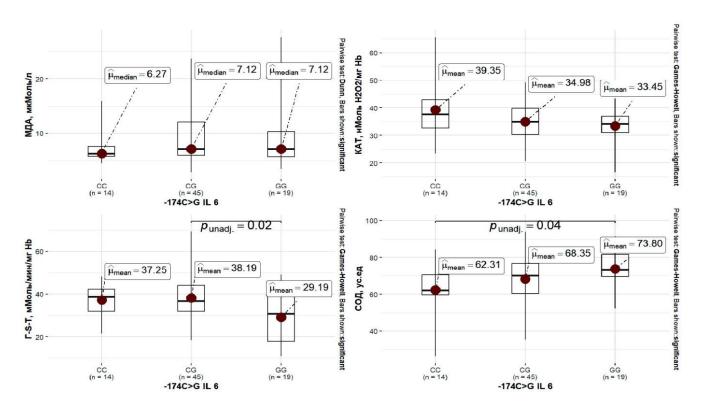


Рисунок 35 — Показатели системы про-/антиоксидантны в зависимости от генотипов полиморфизма гена -174C > G IL 6 у пациентов в 1-й группе исследования (АГ без ХОБЛ)

Уровень активность Γ -S-T у пациентов с генотипом GG был ниже на 30,83 %, чем у пациентов с генотипом CG, а активность COД у пациентов с генотипов GG была выше на 18.46 %, чем у пациентов с генотипом CC.

Таким образом, у пациентов с носительством генотипа GG полиморфизма гена -174C > G IL 6, для которого характерно увеличение экспрессии и соответственно увеличение IL6 в крови, отмечается более выраженное напряжение ферментативного звена системы AO3, что отражается в повышенной активности СОД и более низком детоксикационном потенциале за счет снижения активности Г-S-T Вероятнее всего это происходит за счет того, что генотип GG характеризует хроническое воспаление, которое приводит к развитию ОС. В итоге активируется система Nrf2/KEAP1, представляющая собой основной сигнальный

путь, осуществляющий защиту от ОС и играющий ключевую роль в поддержании окислительно-восстановительного гомеостаза.

Известно, что данный сигнальный ПУТЬ запускается посредством провоспалительных цитокинов, таких как IL6 и TNF-а. Основными компонентами являются Nrf2 – транскрипционный фактор, регулирующий этого пути экспрессию основных генов факторов системы АОЗ и детоксикации, и КЕАР1 – белок-репрессор, который имеет критические цистеиновые остатки (Cys151, Cys273, Cys288). При отсутствии ОС КЕАР1 взаимосвязан с Nrf2, не позволяя таким образом проникать NRF2 в ядро клетки, а при развитии ОС цистеиновые остатки КЕАР1 модифицируются таким образом, что происходит ослабление его взаимосвязи с Nrf2 и он свободно проникает в ядро и активирует гены эндогенных факторов AO3, такие как SOD1 и GSTP1 [122, 89].

- 5.2 Особенности показателей системы про-/антиоксиданты и клиниколабораторные данные у пациентов 2-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ
- 5.2.1 Особенности клинико-лабораторных данных у пациентов 2-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ

Особенности показателей крови и биохимических данных у пациентов 2-й группы наблюдения с полиморфизмом гена -308G > A TNF-а представлены в таблицах 13-14 и на рисунках 36-37.

Таблица 13 — Биохимические показатели крови в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования ($A\Gamma$ на фоне XOБЛ)

Показатели	Генотипы			
Показатели	GA+AA, $N=34$	GG, N = 28		
СРБ, мг/л	6.05 (2.00, 9.00)***	0.85 (0.00, 3.99)***		
АЛТ, Ед/л	17.10 (13.00, 22.90)*	13.10 (3.25, 19.65)*		
АСТ, Ед/л	19.55 (16.00, 26.00)***	12.85 (5.00, 18.45)***		
Глюкоза, ммоль/л	6.40 (5.50, 7.20)	5.54 (4.76, 6.86)		
Креатинин, ммоль/л	83.50 (74.00, 102.00)**	73.00 (23.50, 83.75)**		
ОХС, ммоль/л	3.91 (0.00, 5.18)	4.45 (0.00, 5.97)		
ЛПВП, ммоль/л	0.00 (0.00, 1.13)	0.94 (0.00, 1.28)		
ЛПНП, ммоль/л	0.00 (0.00, 2.86)	0.28 (0.00, 2.68)		
ΤΓ, ммоль/л	0.77 (0.00, 1.43)	0.89(0.00, 1.42)		
Мочевина, ммоль/л	6.90 (5.00, 8.90)**	3.90 (0.00, 7.35)**		

Примечание: * — различия при p < 0.05, ** — при p < 0.01, *** — при p < 0.001. Сокращения: CPB - C-реактивный белок; ACT - аспрататаминотрансфераза; AЛT - аланинаминотрансфераза; OXC - общий холестерин; $ЛПВ\Pi -$ Липопротеины высокой плотности; $ЛПH\Pi -$ Липопротеины низкой плотности; $T\Gamma -$ Триглицериды.

Таблица $14 - \Pi$ оказатели общего анализа крови в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования ($A\Gamma$ на фоне XOБЛ)

	Показатели					
Генотипы	Эритроциты	Гемоглобин,	Лейкоциты	Тромбоциты		
	*10^ ¹² /л	г/л	*10^9/л	*10^9/л		
GG,	4.46	13.80	6.45	242.50		
N=28	(1.89, 4.90)***	(5.55, 15.15)***	(1.60, 10.81)	(97.50, 279.50)		
GA+AA,	4.99	15.60	8.44	252.00		
N = 34	(4.75, 5.50)***	(14.40, 16.60)***	(6.68, 10.41)	(181.00, 281.00)		

Примечание: *- различия при p < 0.05; **- при p < 0.01; ***- при p < 0.001.

Как видно из данных таблиц, у пациентов 2-й группы (АГ+ХОБЛ) исследования выявлена статистически значимая разница в некоторых клинико-лабораторных и биохимических показателях крови в зависимости от генотипов полиморфизма гена -308G > A TNF-а. В связи с тем, что носителей с мутантным генотипом AA полиморфизма гена -308G > A TNF-а во 2-й группе исследование выявлено недостаточно для достоверной оценки различий в клинико-

лабораторных анализах и показателях системы про-/антиоксиданты, было принято решение объединить носителей с мутантным генотипом AA и гетерозиготным генотипом GA (общее количество носителей аллеля A).

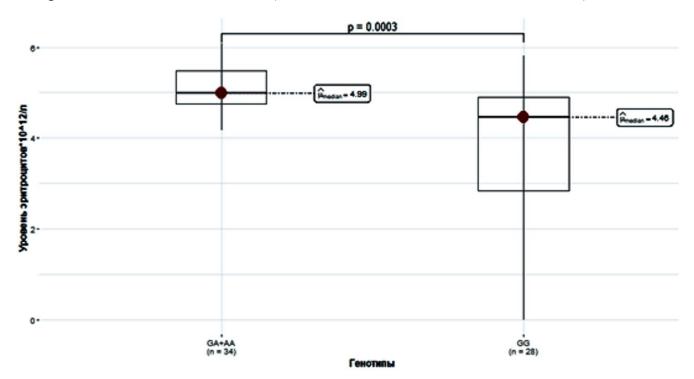


Рисунок 36 — Уровень эритроцитов* 10^{12} л в зависимости от генотипов полиморфизма гена -308 G > A TNF-а у пациентов во 2-й группе исследования (АГ на фоне ХОБЛ)

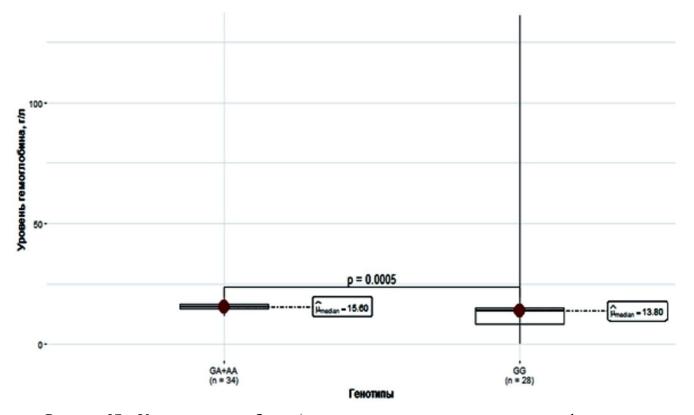


Рисунок 37 — Уровень гемоглобина г/л в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования (АГ на фоне ХОБЛ)

Результаты исследования показателей общего анализа крови, приведенные на рисунках 38–39, у пациентов 2-й группы наблюдения в зависимости от генотипов полиморфизма гена -308G > А TNF-а продемонстрировали увеличение количества эритроцитов и концентрации гемоглобина у носителей генотипа GA+AA по сравнению с генотипом GG. Уровень гемоглобина у носителей GG составил в среднем 13,80 г/л, тогда как у носителей GA+AA — 15.60 г/л. (таблица 14, рисунок 39, 40), что может быть связано со сгущением крови.

В результате исследования показателей биохимического анализа крови выявлено, что уровень С-реактивного белка в зависимости от генотипов полиморфизма гена -308G > А TNF-а в группе наблюдения с АГ на фоне ХОБЛ статистически значимо отличался у пациентов с генотипом GA и AA, по сравнению с генотипом GG. У носителей генотипов GA+AA уровень СРБ, мг/л составил в среднем 6,05 мг/л, а у носителей генотипа GG 0,85 мг/л (р < 0,001), (рисунок 38).

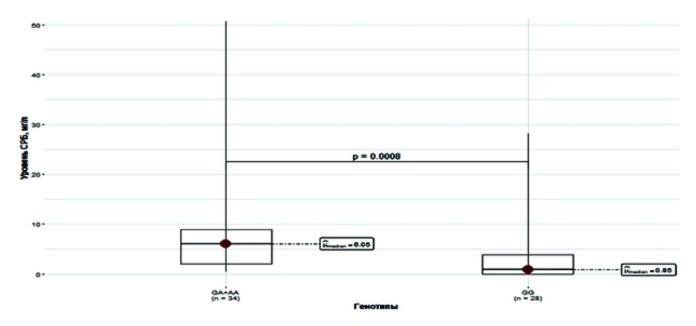


Рисунок 38 — Уровень С-реактивного белка в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования (АГ на фоне ХОБЛ)

Кроме того, ранее было установлено, что для генотипов GA и AA полиморфизма гена -308G > A TNF-а характерно увеличение экспрессии гена TNF, в результате чего повышается уровень TNF- α . В свою очередь TNF- α участвует в активации NF- κ B — основного транскрипционного фактора, запускающего

экспрессию более 200 генов, ответственных за развитие реакции воспаления. Основными генами мишенями NF-кВ являются гены провоспалительных цитокинов, таких как TNF- α , IL-1 β , IL-6, IL-8, гены хемокинов: MCP-1, RANTES и гены ферментов воспаления: COX-2, iNOS (NO) [130, 35].

Помимо этого, у пациентов второй группы исследования отмечено, что уровень АЛТ и АСТ был различен в зависимости от генотипа полиморфного варианта гена -308G > A TNF-а (рисунок 39).

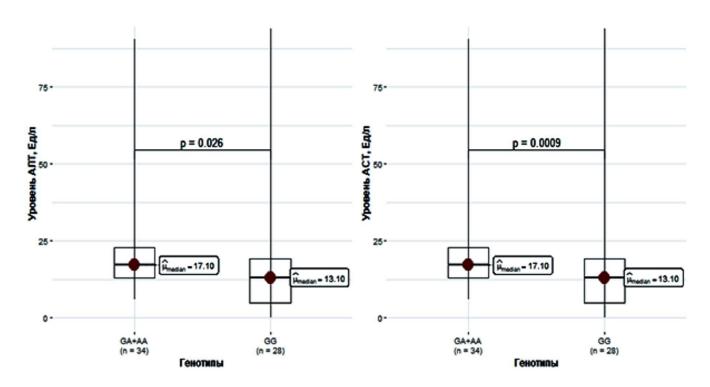


Рисунок 39 — Уровень АЛТ и АСТ, Ед/л в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования (АГ на фоне ХОБЛ)

У носителей генотипов GA+AA уровень АЛТ (p < 0.05) и АСТ (p < 0.001) был выше, чем у носителей GG. Эти маркеры отражают общие сдвиги в метаболических процессах и состояние функции печени, которая является основным органом детоксикации, прежде всего, продукции компонентов системы биотрасформации ксенобиотиков. Уровень АСТ и АЛТ может отражать уровень цитолиза.

В литературе имеются многочисленные данные о влияние полиморфизма гена -308G > A TNF-а на развитие и прогрессирование дисфункции почек [22, 68, 133]. Учитывая все вышеизложенное и тот факт, что нарушение функции почек может быть одним из факторов развития АГ, на следующем этапе исследования у

пациентов во 2-й группе исследования (АГ на фоне ХОБЛ) определяли уровень креатинина и мочевины (рисунок 40 и 41).

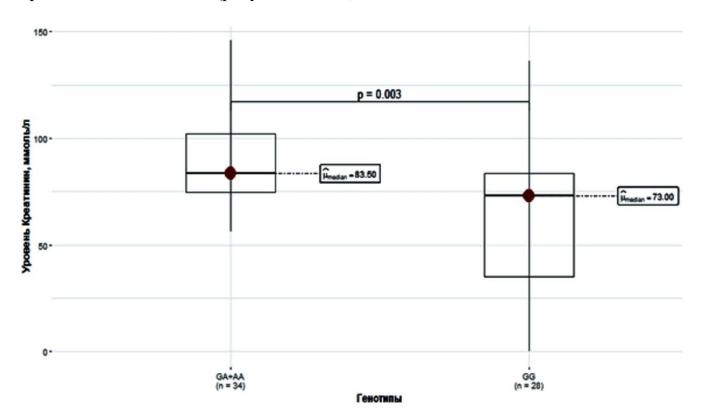


Рисунок 40 — Уровень креатинина, ммоль/л в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования (АГ на фоне ХОБЛ)

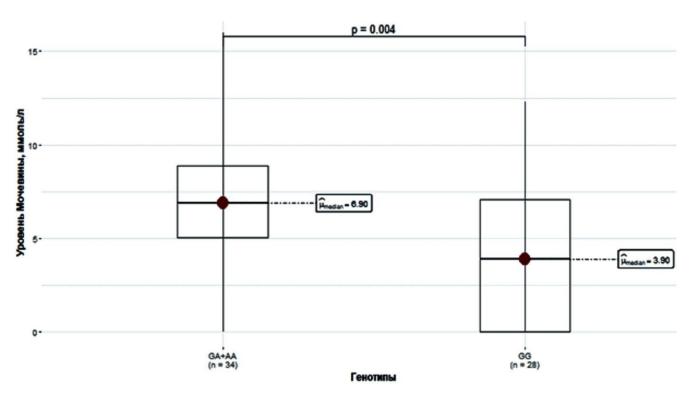


Рисунок 41 — Уровень мочевины, ммоль/л в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования (А Γ на фоне ХОБЛ)

Уровень креатинина и мочевины в биохимическом анализе крови, которые отражают функцию почек, также были различны в зависимости от генотипов полиморфизма гена -308G > A TNF-а (p < 0.01). Уровень креатинина у носителей генотипов GA+AA составил 83.50 ммоль/л и был выше на 15 % чем у носителей генотипа GG, уровень которого составил 73.00 ммоль/л.

Полученные данные, вероятно, связаны с тем, что носители генотипов GA+AA полиморфизма гена -308G > A TNF-а имеют повышенную экспрессию TNF-а, что запускает системное воспаление, за счет активации NF-кВ. Выраженное системное воспаление приводит к повреждению почечных канальцев и, в конечном итоге, развитию и прогрессированию дисфункции почек. Помимо этого, повышенный уровень TNF-*а* активирует трансформирующий фактор роста (TGF) β, который является основным медиатором фиброза почек.

5.2.2 Особенности показателей системы про-/антиоксиданты у пациентов 2-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ

У пациентов 2-й группы наблюдения (АГ на фоне ХОБЛ) наблюдались особенности изменений в системе про-/антиоксидантны с носительством генотипов (GA+AA) полиморфизма гена -308G > A TNF-а (таблица 15, рисунок 42).

Так уровень МДА с носительством генотипов GA+AA на 81,05 % был выше, чем у пациентов с носительством генотипа GG, что говорит о более выраженных процессах СРО и ПОЛ у данной подгруппы больных (р < 0.001). На фоне этого можно отметить, что у пациентов с носительством генотипов GA+AA одновременно наблюдается функциональная активация и перенапряжение в системах AO3 и детоксикации, что отражается в увеличении активности Г-S-T,

которая была статистически значимо выше на 41.93~% у пациентов с носительством генотипа GG (p < 0.001).

Таблица 15 — Показатели системы про-/антиоксидантны в зависимости от генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе исследования (А Γ на фоне ХОБЛ)

Гонотин	N	МДА,	КАТ,	Г-S-Т,	СОД,
Генотип		мкМоль/л	нМоль H2O2/мг Hb	мМоль/мин/мг Hb	ус.ед
G/G	28	7.44	36.63	28.36	77.28
	28	(4.79, 11.39)***	(32.35, 41.06)	(20.71, 39.10)***	(65.72, 86.76)
G/A+A/A	34	13.36	39.90	39.96	79.24
		(10.72, 14.46)***	(36.01, 43.50)	(34.98, 44.39)***	(69.85, 86.87)

Примечание: * – различие при p < 0.05; ** – при p < 0.01; *** – при p < 0.001.

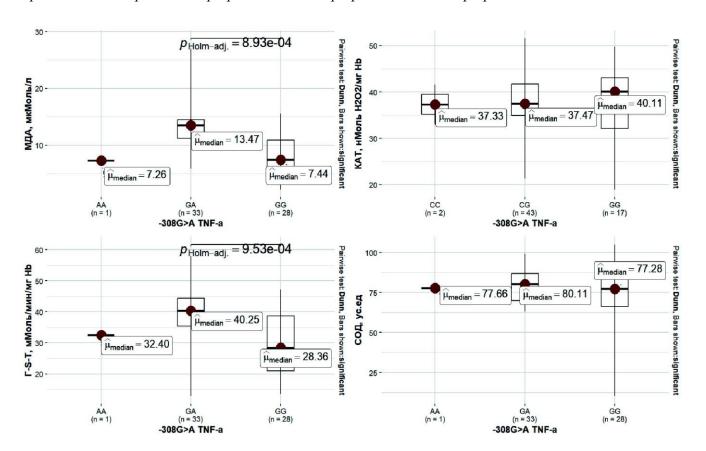


Рисунок $42 - \Pi$ оказатели системы про-/антиоксидантны в зависимости от генотипов полиморфизма -308G > A TNF-а у пациентов во 2-й группе исследования (А Γ на фоне ХОБЛ)

Анализ показателей системы про-/антиоксиданты в зависимости от генотипов полиморфизмов генов -174C > G IL 6, -1082G > A IL 10 и -592C > A IL 10 не показал достоверных различий в подгруппах с разными полиморфными вариантами изучаемых генов.

- 5.3 Особенности показателей системы про-/антиоксиданты и клиниколабораторные данные у пациентов 3-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ
- 5.3.1 Особенности клинико-лабораторных данных у пациентов 3-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ

Анализ клинико-лабораторных биохимических показателей и показателей общего анализа крови в зависимости от генотипов исследуемых полиморфизмов генов не выявил статистически значимых различий между группами с различным генотипом в данной подгруппе наблюдаемых больных.

5.3.2 Особенности показателей системы про-/антиоксиданты у пациентов 3-й группы наблюдения с различным генотипом по изучаемым генам иммунной системы, системы биотрансформации ксенобиотиков, антиоксидантной защиты и гена АСЕ

Особенности показателей системы про- /антиоксидантны в зависимости от генотипов полиморфизма генов -174C > G IL 6 у пациентов в 3-й группе исследования ХОБЛ без АГ представлены в таблице 16 и рисунке 43.

Таблица 16 — Показатели системы про- /антиоксидантны в зависимости от генотипов полиморфизма генов -174C > G IL 6 у пациентов в 3-й группе исследования (ХОБЛ без $A\Gamma$)

Гахгатууг	NT	МДА,	KAT,	Г-S-Т,	СОД,
Генотип	IN	мкМоль/л	нМоль H2O2/мг Hb	мМоль/мин/мг Hb	ус.ед
C/C	8	$4.71 \pm 2.07**$	28.07 (26.04, 32.61)	17.21(15.15, 23.08)	79.27 (69.18, 80.51)
C/G	8	$10.24 \pm 3.90**$	38.66 (30.89, 42.20)	36.00 (23.96, 39.98)	75.87 (70.45, 82.21)
G/G	6	5.81 ± 1.70	29.88 (18.98, 43.46)	27.61 (11.57, 57.20)	77.98 (70.71, 94.27)

Примечание: * — различие между аллелью 1 и гетерозиготой при p < 0.05 (** — при p < 0.01, *** — при p < 0.001); ^ — различия между аллелью 1 и аллелью 2 при p < 0.05 (^^ — при p < 0.01, ^^ — при p < 0.001); # — различия между аллелью 2 и гетерозиготой при p < 0.05 (## — при p < 0.01, ### — при p < 0.001).

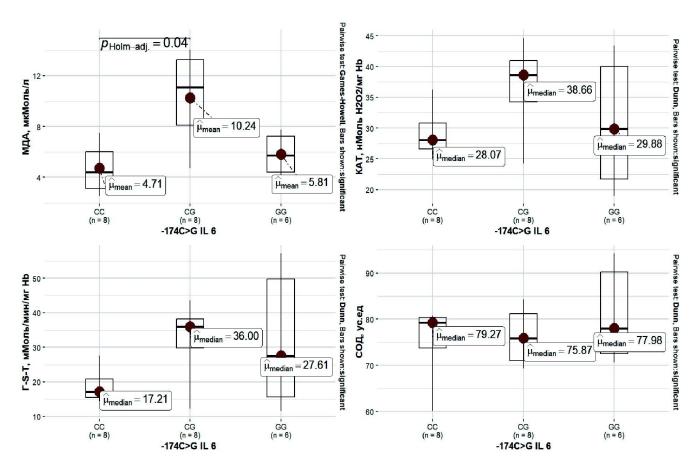


Рисунок 43 -Показатели системы про-/антиоксидантны в зависимости от генотипов полиморфизма -174C > G IL 6 у пациентов 3-й группе исследования (ХОБЛ без АГ)

Изучение показателей системы про- /антиоксидантны в 3-й группе наблюдения позволил отметить статистически значимые изменения у пациентов по полиморфизму гена -174С > G IL 6. Так у пациентов установлены особенности по носительству генотипа СG и СС полиморфизма гена -174С > G IL 6. Уровень

МДА у носителей генотипа СG был выше на 117.41~% чем у носителей генотипа СС и на 76.2~% чем у носителей GG (p < 0.01). Статистически значимые различия показателей ферментного звена системы AO3 у пациентов 3-й группы исследования в зависимости от полиморфизма гена -174С > G IL 6 не выявлены.

ЗАКЛЮЧЕНИЕ

В диссертационной работе подробно проанализированы в сравнительном плане показатели системы про-/антиоксиданты у пациентов с АГ, ХОБЛ и их коморбидной формой, изучены генетические особенности и их взаимосвязь с показателями системы про-/антиоксиданты и клинико-лабораторными показателями у данных групп пациентов.

В результате проведенных исследований установлено, что полиморфизм генов отдельных изучаемых факторов систем биотрансформации ксенобитиков, АОЗ, иммунного контроля и РААС оказывает значительное влияние на показатели активности различных ферментов, выраженность метаболических и патобиохимических сдвигов в организме, а также на фенотип МФЗ, что связано с индивидуальным генотипом. На основании полученных данных можно сделать вывод о возможности прогнозирования развития различных патологических процессов и заболеваний, характер их течения и эффективность проводимой терапии. При этом комплексная оценка полиморфных вариантов определенных генов может лечь в основу разработки программы ДНК-чипов для внедрения в медицинскую практику.

В результате исследования *сдвигов* в системе про-/антиоксиданты у исследуемых групп пациентов с АГ и ХОБЛ, установлено, что у пациентов всех наблюдаемых групп имеет место значительная активация процессов ПОЛ. Данный факт может свидетельствовать о наличии выраженной прооксидантной нагрузки на организм больного с исследуемыми МФЗ, прежде всего на систему АОЗ и биотрансформации ксенобиотиков.

Первичные, промежуточные и конечные продукты ПОЛ, такие как МДА, обладают высокой реакционной способностью и доказанной мембрано- и цитотоксичностью. Кроме этого, продукты избыточной пероксидации биомолекул являются важной составной частью синдрома эндогенной интоксикации, который тесно связан с синдромом ОС, развивающего на фоне дисбаланса в системе про-/

антиоксиданты в сторону превалирования второго звена системы. Это подтверждено проведенным исследованием, в котором установлено, что показатели системы AO3 у всех групп пациентов имели неблагоприятные сдвиги.

Следует отметить, что более выраженные изменения в показателях системы AO3, относительно показательней контрольной группы условно здоровых доноров, выявлены у группы пациентов с XOБЛ.

У больных, длительное время страдающих ХОБЛ, установлен более высокий уровень ПОЛ по МДА и более значимые отклонения в показателях ферментного звена системы АОЗ. Данный факт можно объяснить тем, что у заболевание данной больных сопровождается группы хроническим воспалительным процессом, нарушениями гемодинамики, гипоксией гипоэнергетическими процессами в тканях и клетках, что является ведущим патобиохимическим и патогенетическим звеном развития ОС и эндогенной интоксикации.

Реакция системы АОЗ проявляется в изменении активности ее ферментного звена, при этом зачастую наблюдаются разнонаправленные изменения активности отдельных ферментов, в зависимости от стадии заболевания, длительности и тяжести болезни, в результате чего усиливается прооксидантная нагрузка на организм, что и было подтверждено в проведенном исследовании [29, 25].

Активность СОД у пациентов с изучаемой мультифакториальной патологией была повышенной, а активность Г-S-T и КАТ снижена, что служит одной из причин дополнительного образования различных представителей АФК.

При функционировании СОД образуется перекись водорода, в обезвреживании которой участвует КАТ и ферменты глутатионовой системы, активность которых имеет существенное значение. Избыточное образование перекиси водорода может стать основой появления других, более агрессивных АФК.

В частности, в реакциях Фентона и Хабер-Вейсса может образовываться супероксидный анион радикал (рисунок 44).

$$H_2O_2$$
 — $ho' + ho'$ Но' + но' H_2O_2 — H_2O_2

Рисунок 44 — Реакция Фентона и Хабер-Вайса (https://biokhimija.ru/oxidative-stress/aktivatsiya-kisloroda.html)

В соответствии с поставленными задачами в работе были исследованы полиморфизмы генов как противовоспалительных (ИЛ-10), так и цитокинов провоспалительной направленности (ФНО, ИЛ-6) по наиболее изученным и значимым локусам, которые могут оказывать влияние на экспрессию генов и на уровень цитокинов в организме. Выявлено, что во второй группе пациентов с коморбидной формой АГ и ХОБЛ преимущественно определенны полиморфные мутационные варианты генов -308 G > A TNF и -174 C > G IL 6 по сравнению с другими группами и контрольной группой. Следовательно, носительство мутации данных генов повышает риск развития коморбидной формы АГ на фоне ХОБЛ. Полиморфизм гена -1082 G > A IL 10, связанный с носительством генотипов AA, можно расценивать как фактор повышающий риск развития ХОБЛ.

данной диссертационной Наряду этим. работе полиморфизмы биотрансформации проанализированы генов систем ксенобиотиков, АОЗ и основанного компонента РААС – АСЕ. Выявлено, что наличие генотипа AG полиморфизма гена -313A > G GSTP1 и CT и TT полиморфизма гена 341C > T GSTP1 ассоциировано с риском развития ХОБЛ, что связано с изменением гидрофобности аминокислоты при данной мутации, ингибированию активности и термической нестабильности фермента, в результате чего снижается его детоксикационная способность, накапливается избыточное количество продуктов ПОЛ и СРО в тканях легких, что, в конечном итоге, может привести к развитию воспаления и ХОБЛ. Стоит отметить, что генотип GG полиморфизма гена -313A > G GSTP1 в большей степени выявлен во

2-й группе исследования (29 %), по сравнению с остальными группами исследования и контрольной группы.

На основании полученных данных нами впервые выявлено, что генотип 1A*1B полиморфизма гена -392A > G СҮРЗА4 достоверно чаще встречался у пациентов во 2-й и 3-й группе исследования (АГ+ХОБЛ и ХОБЛ) и, таким образом, ассоциировался с риском развития ХОБЛ.

Полученные нами результаты по распределению генотипов полиморфного локуса гѕ4646994 гена АСЕ подтверждают данные проведенных ранее исследований [14, 42]. Наличие генотипов ID и DD полиморфного локуса гѕ4646994 гена ACE можно рассматривать как риск развития МФЗ, таких как АГ, ХОБЛ. Связь носительства генотипов ID и DD полиморфного локуса гѕ4646994 гена ACE c развитием коморбидной формы АГ и ХОБЛ, как показано в ряде работ, в нашем исследовании на отдельной популяционной группе жителей КК не подтвердилась.

Анализ исследуемых полиморфных локусов с показателями системы про-/антиоксидантов в группах наблюдения показал, что в 1-й группе исследования наиболее выраженные изменения в АОЗ отмечались в зависимости от генотипов полиморфизма гена -174С > G IL 6. У носителей с генотипом GG данного полиморфизма наблюдалось более высокое напряжение ферментативного звена по сравнению с носителями остальных генотипов. Таким образом, GG-генотип полиморфизма гена -174С > G IL 6 стоит рассматривать как риск более выраженных сдвигов в системе про-/антиоксиданты у пациентов с АГ.

У пациентов 2-й группы исследования, т.е. с коморбидной формой АГ на фоне ХОБЛ, наблюдались изменения в системе про-/антиоксидантов в зависимости от генотипа полиморфизма гена -308G > А ТNF-а. У носителей генотипов GA+AA отмечалось увеличение основного маркера ПОЛ-МДА, а также наблюдалось напряжение АОЗ за счет увеличения активности Г-S-T по сравнение с генотипом GG. Помимо этого, у носителей генотипов GA+AA отмечены неблагоприятные изменения в биохимическом анализе крови, по сравнению с носителями генотипа GG. Уровень СРБ у носителей гетерозиготного

и мутантного генотипов был более чем в 6 раз выше, чем у носителей генотипа GG, что говорит о более выраженной воспалительной реакции у данной группы пациентов. Все это позволило рассматривать генотипы GA и AA полиморфизма гена -308G > A TNF-а у пациентов с коморбидной формой AГ на фоне ХОБЛ как риск развития более значимых сдвигов в системе про-/антиоксиданты и более выраженных сдвигов в клинико-лабораторных показателях и особенностях клинической картины заболевания.

Изучение показателей системы про-/антиоксидантны в 3-й группе наблюдения (ХОБЛ без АГ) позволило отметить статистически значимые изменения у пациентов с носительством генотипа СС полиморфизма гена -174С > G IL 6 по сравнению с генотипом СС. Уровень МДА у носителей генотипа СС был выше на 117.41 %, чем у носителей генотипа СС, что позволяет рассматривать носительство гетерозиготного генотипа полиморфизма гена -174С > G IL 6 как риск развития выраженных изменений в системе про-/антиоксидантны.

Выводы

- 1. При развитии мультифакторных заболеваний дыхательной и сердечно сосудистой систем, таких как артериальная гипертензия и хроническая обструктивная болезнь легких, наблюдаются значительная активация процессов свободнорадикального окисления и перекисного окисления липидов, что проявляется накоплением в тканях и биологических жидкостях избыточного количества продуктов пероксидации, прежде всего малонового диальдегида (в работе установлено повышение малонового диальдегида в крови более чем в 2 раза), что может характеризоваться как хронический окислительный стресс (наиболее выраженные изменения установлены у пациентов с коморбидной формой артериальной гипертензии на фоне хронической обструктивной болезни легких).
- 2. На фоне развития окислительного стресса у пациентов с артериальной гипертензией и хронической обструктивной болезнью легких отмечается напряжение в работе ферментного звена системы антиоксидантной защиты и биотрансформации ксенобиотиков, сопровождающееся разнонаправленными изменениями активности изучаемых энзимов (установлено статистически значимое повышение активности супероксиддисмутазы и снижение активности каталазы и глутатион-S-трансферазы). При этом наиболее выраженные изменения в показателях системы антиоксидантной защиты, относительно показателей контрольной группы, выявлены у пациентов с хронической обструктивной болезни легких, что может служить фактором дополнительного образования агрессивных активных форм кислорода.
- 3. Носительство генотипов: CG или GG -174C > G IL-6, генотипов GA -308G > A TNF, генотипа GG полиморфизма гена -313A > G GSTP1 повышает риск развития коморбидной формы артериальной гипертензии на фоне хронической обструктивной болезни легких. Носительство генотипа AA -1082G > A IL 10, генотипов AG полиморфизма гена -313A > G GSTP1, генотипов

СТ и ТТ полиморфизма гена -341С > Т GSTP1, генотипа 1A*1B полиморфизма гена -392A > G CYP3A4 ассоциировано с риском развития хронической обструктивной болезни легких. Носительство генотипов ID и DD полиморфного локуса гена ACE Alu Ins/Del I > D можно рассматривать как риск развития артериальной гипертензии и хронической обструктивной болезни легких.

- 4. В зависимости от носительства определенных генотипов изучаемых факторов цитокиновой системы отмечается определенная закономерность изменений в системе про /антиоксиданты: генотип СС полиморфного варианта гена -174C > G IL-6 способствует более выраженными сдвигам в системе про-/антиоксиданты у пациентов с артериальной гипертензией и у пациентов с хронической обструктивной болезни легких без артериальной гипертензии; генотип GA и AA полиморфного варианта гена -308G > A TNF способствует более выраженными сдвигам в системе про-/антиоксиданты у пациентов с коморбидной формой артериальной гипертензии фоне хронической обструктивной болезни легких, что подтверждает факт взаимозависимости функционирования компонентов иммунной и антиоксидантной систем.
- 5. В качестве основы разработки прогностических чипов для оценки риска развития изучаемых мультифакториальных заболевании могут служить, полиморфные варианты генов -174C > G IL-6, -308G > A TNF, -313A > G GSTP1, -7958 G > A SOD1 у пациентов с коморбидной формой артериальной гипертензии и хронической обструктивной болезни легких; -1082G > A IL 10, -392A > G CYP3A4 у пациентов с хронической обструктивной болезни легких; ACE Alu Ins/Del I > D у пациентов с артериальной гипертензией, хронической обструктивной болезнью легких и их коморбидной формой, что требует дальнейшей корреляционной обработки

Практические рекомендации

- 1. Существует необходимость проводить оценку оксидативных сдвигов в организме пациентов с изучаемыми мультифакторными заболеваниями (артериальной гипертензией, хронической обструктивной болезни легких и их коморбидной формой), как дополнительного фактора оценки тяжести течения заболевания и контроля проводимого лечения. При этом наиболее перспективно определение уровня малонового диальдегида, как универсального маркера развития и уровня выраженности окислительного стресса.
- 2. Выявление генотипов CG и GG -174C > G IL-6, генотипов GA -308G > A TNF, генотипа GG полиморфизма гена -313A > G GSTP1 необходимо рассматривать как дополнительный риск развития коморбидной формы артериальной гипертензией на фоне хронической обструктивной болезни легких, а генотипа AA -1082G > A IL 10, генотипа AG полиморфизма гена -313A > G GSTP1, генотипов CT и TT полиморфизма гена -341C > T GSTP1, генотипа 1A*1B полиморфизма гена -392A > G CYP3A44, как риск развития хронической обструктивной болезни легких.
- 3. Пациентам с носительством генотипов CG полиморфизма гена -174C > G IL-6, GA полиморфизма гена -308G > A TNF дополнительно проводить направленную антиоксидантную терапию, поскольку данный генотип ассоциирован с высоким уровнем оксидативных сдвигов в организме больных за счет повышения уровня малонового диальдегида и изменения активности ферментов антиоксидантной защиты.
- 4. Использовать полученные данные генотипирования для создания программ ДНК-чипов (проект создан), направленных на раннее выявление предрасположенности и прогнозирования развития мультифакторных заболеваний, таких как артериальная гипертензия, хроническая обструктивная болезнь легких и коморбидной формы артериальной гипертензии на фоне хронической обструктивной болезни легких на основании установленных

генотипических особенностей при отдельных нозологиях и внедрить его в выпуск и широкомасштабное использование.

5. Целесообразно создание и использование прогностических генетических паспортов для отдельных групп нозологий с учетом выявленных проблемных генетических профилей для оценки риска развития изучаемых патологий и прогноза их течения.

Перспективы дальнейшей разработки темы исследования

Перспектива дальнейшей разработки темы заключается в последующем исследовании связи полногеномных данных групп популяций с развитием МФЗ, в особенности с коморбидными состояниями, а также выявление различий метаболических сдвигов у пациентов с МФЗ. Известно, что одно и тоже МФЗ может иметь различную клиническую вариабельность, поэтому особый интерес представляет дальнейшее изучение характера метаболических сдвигов у пациентов с АГ, ХОБЛ и их коморбидной формы в связи с их клинической вариабельность на фоне полиморфизмов генов систем, вовлеченных патологический метаболический процесс. Дальнейшее изучение связи полногеномного исследования И биохимического анализа позволят сконструировать генные и метаболические проблемные сети МФЗ для выявления как наиболее распространенных клинических и метаболических фенотипов, так и для поиска генов-мишеней и, соответственно, разработки оптимального лечения с использованием подходов фармакогенетики. Также перспективным является дальнейшее исследование взаимосвязей между генетическими данными, метаболических развитием патологических сдвигов И изменением морфологической структурой тканей органов-мишеней при МФЗ.

СПИСОК СОКРАЩЕНИЙ

GSTP1 – Глутатион-S-трансфераза пи1

NAT – N-ацетилтрансфераза

АГ – Артериальная гипертензия

АД – артериального давления

АОС – антиоксидантная система

АПФ, АСЕ – ангиотензинпревращающему ферменту

АФК – активные формы кислорода

 Γ -S-T, GST — глутатион-S-трансфераза

ИЛ - 10, IL-10 — интерлейкин-10

ИЛ - 6, IL-6 — интерлейкин-6

ИС – иммунная система

KAT, CAT — каталаза

КП – Количественные показатели

КС – коморбидные состояния

МДА – малоновый диальдегид

МФЗ – мультифакториальные заболевания

ОС – оксидативный стресс

ПОЛ – перекисное окисление липидов

РААС – ренин-ангиотензин-альдостероновая система

САС – симпатоадреналовой системы

СОД, SOD – супероксиддисмутаза

СРО – свободно-радикальное окисление

ССЗ – сердечно-сосудистые заболевания

ССС – сердечно-сосудистой системы

ФНО-а, TNF-а – фактор некроза опухоли

ХОБЛ – хроническая обструктивная болезнь легких

СПИСОК ЛИТЕРАТУРЫ

- 1. Активность глутатионтрансферазы в эритроцитах пациентов при артериальной гипертензии / Г.П. Зубрицкая, Е.Н. Найда, Е.А. Григоренко [и др.] // Молекулярные, мембранные и клеточные основы функционирования биосистем. К 100-летию белорусской академической науки : тезисы докладов международной научной конференции, Пятнадцатого съезда Белорусского общественного объединения фотобиологов и биофизиков. Минск, 2022. С. 120.
- 2. Ассоциация полиморфизмов генов обмена ангиотензина с диастолической дисфункцией левого желудочка у больных гипертонической болезнью / Т.В. Калинкина, Н.В. Ларева, М.В. Чистякова, М.А. Серкин // Тихоокеанский медицинский журнал. 2023. № 1(91). С. 44–49.
- 3. Белоус, Е.М. Образование активных форм кислорода в клетках. Роль митохондрий / Е.М. Белоус, К.Д. Синьковская // Актуальные проблемы общей и клинической биохимии: сборник материалов республиканской научнопрактической конференции. Гродно, 2024. С. 129–136.
- 4. Бремя тяжелых обострений, их связь с клиническими исходами и использованием ресурсов здравоохранения в российской популяции пациентов с хронической обструктивной болезнью легких: субанализ российской популяции международного исследования EXACOS International / С.Н. Авдеев, И.В. Лещенко, Г.Л. Игнатова [и др.] // Пульмонология. 2024. Т. 34. № 3. С. 427—440.
- 5. Вклад артериальной гипертонии и других факторов риска в выживаемость и смертность в российской популяции / Ю.А. Баланова, С.А. Шальнова, В.А. Куценко [и др.] // Кардиоваскулярная терапия и профилактика. 2021. Т. 20. № 5. С. 164–174.
- 6. Влияние генетического полиморфизма семейств цитохром P-450 и глутатион-S-трансферазы на тяжесть развития токсических гепатитов при острых отравлениях и эндотоксикозах / А.М. Хаджибаев, Д.Б. Туляганов, Р.Н. Акалаев [и др.] // Вестник экстренной медицины. 2024. Т. 17. № 1. С. 52–60.

- 7. Гареева, А.Э. Генетическая структура выборки русских, татар и башкир по данным полногеномного исследования / А.Э. Гареева, Э.К. Хуснутдинова // ИЗВЕСТИЯ. 2023. № 2. С. 34–37.
- 8. Александрова, Л.А. Статус глутатиона эритроцитов в клинической медицине: реальность и возможности / Л.А. Александрова // Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова. 2024. Т. 31. № 2. С. 19–27.
- 9. Гендерные особенности распространенности хронических неинфекционных заболеваний во взрослой популяции Владимирской области / М.Н. Мамедов, Л.Т. Сушкова, Р.В. Исаков [и др.] // Кардиоваскулярная терапия и профилактика. 2024. Т. 22. № 12. С. 3779.
- 10. Гены кандидаты артериальной гипертензии и избыточной массы тела: роль в прогнозировании сердечно сосудистых осложнений / С.А. Костюк, М.В. Штонда, М.С. Пристром [и др.] // Медицинские новости. 2023. № 6(345). С. 15–18.
- 11. Горяйнова, С.В. Изучение цитокиновой активности и генетического статуса у больных артериальной гипертензией // Достижения современной науки: биотехнология, химия и фармация (БТХФ-2023): Сборник материалов I Всероссийской научно-практической конференции. 25–27 октября. Симферополь, 2023. С. 36–37.
- 12. Даренская, М.А. Окислительный стресс: патогенетическая роль в развитии сахарного диабета и его осложнений, терапевтические подходы к коррекции / М.А. Даренская, Л.И. Колесникова, С.И. Колесников // Бюллетень экспериментальной биологии и медицины. − 2021. − Т. 171. − № 2. − С. 136–149.
- 13. Даушева, А.Х. Анализ распространенности полиморфизма rs4646994 гена ангиотензинпревращающего фермента у больных с хронической обструктивной болезнью легких / А.Х. Даушева, Е.Г. Зарубина, Ю.В. Богданова // The scientific and practical medical journal. 2024. С. 59.
- 14. Долгалёв, И.В. Прогностическая значимость предикторов сердечно-сосудистых заболеваний в формировании смертности от сердечно-сосудистых

- заболеваний и от всех причин (результаты 27-летнего когортного проспективного исследования) / И.В. Долгалёв, А.Ю. Иванова, Р.С. Карпов // Российский кардиологический журнал. -2023. Т. 28. № 2. С. 14—19.
- 15. Драпкина, О.М. Смертность от артериальной гипертензии: необходимость исследований причин региональных различий / О.М. Драпкина, И.В. Самородская // Профилактическая медицина. -2021. Т. 24. № 6. С. 79–84.
- 16. Изменение состояния глутатионового звена антиоксидантной системы в лимфоцитах периферической крови пациентов с хроническим лимфоцитарным лейкозом / Г.П. Зубрицкая, Е.В. Шамова, И.Ю. Лендина [и др.] // Новости медикобиологических наук. -2024. Т. 24. № 3. С. 49.
- 17. Изучение полиморфизма генов ренин-ангиотензин-альдостероновой системы у пациентов с фибрилляцией предсердий неклапанного генеза с наличием или отсутствием артериальной гипертензии (пилотное исследование) / О.Н. Огуркова, Ю.Г. Лугачёва, Т.Е. Суслова [и др.] // Медицинская генетика. − 2024. Т. 23. № 4. С. 54–62.
- 18. Камилова, У.К. Кардиоваскулярные факторы риска у больных хронической обструктивной болезнью легких / У.К. Камилова, А.У. Ермекбаева, С.С. Тошов // INDEXING. -2024. T. 1. № 2. C. 126-130.
- 19. Китаева, Н. Механизмы, лежащие в основе хронического воспаления дыхательных путей и изменения структуры легких при ХОБЛ // Medicine, Pedagogy and Technology: Theory and Practice. -2024. Vol. 2. № 10. С. 226–229.
- 20. Коморбидность ишемической болезни сердца и ее значение в прогнозировании результатов аортокоронарного шунтирования / В.Ю. Рублев, Б.И. Гельцер, Е.А. Сергеев [и др.] // Бюллетень сибирской медицины. 2022. Т. 21. № 1. C. 152–161.
- 21. Костюшок, Н.Я. Особенности диабетической нефропатии у лиц с различными полиморфными вариантами гена Интерлейкина-6 (С174G) / Н.Я. Костюшок, Л.А. Иванова, И.И. Павлюченко // Медицинская наука и образование Урала. 2022. Т. 23. № 3(111). С. 24–28.
- 22. Мамедов, М.Н. Особенности качества жизни и индекса коморбидности у больных артериальной гипертонией и сочетанной патологией / М.Н. Мамедов,

- Б.У. Марданов, Э.Б. Ахмедова // Профилактическая медицина. 2023. Т. 26. № 2. С. 56–62.
- 23. Мармыш, В.Г. Роль системы глутатиона в поддержании редокс-гомеостаза и антиоксидантной защиты при воспалительных и дегенеративно-дистрофических заболеваниях органа зрения / В.Г. Мармыш // Журнал Гродненского государственного медицинского университета. 2021. Т. 19. № 4. С. 382—391. DOI: 10.25298/2221-8785-2021-19-4-382-391.
- 24. Павлюченко, И.И. Сравнительный анализ показателей системы антиоксидантной защиты у пациентов с гипотиреозом и ХОБЛ / И.И. Павлюченко, Е.И. Дыдышко, О.С. Охременко // Кубанский научный медицинский вестник. 2017. № 24(5). С. 59—62. DOI: 10.25207/1608-6228-2017-24-5-59-62.
- 25. Пелевина, И.Д. Хроническая обструктивная болезнь легких с коморбидной артериальной гипертензией: клинико-функциональные особенности и лечебная тактика в период отказа от табакокурения : автореф. дис. ... канд. мед. наук. Санкт-Петербург : Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова, 2021. 23 с.
- 26. Перетолчина, Н.П. Роль полиморфизма гена N-ацетилтрансферазы 2 в патологии человека / Н.П. Перетолчина, И.В. Малов, И.Ж. Семинский // Acta biomedica scientifica. -2021. T. 6. № 5. C. 30-43.
- 27. Подходы к терапии обострения хронической обструктивной болезни легких при коморбидной артериальной гипертензии / И.В. Козлова, А.Ю. Рябова, М.А. Осадчук [и др.] // Пульмонология. 2021. Т. 31. № 4. С. 439—445.
- 28. Показатели окислительного стресса у пациентов с хронической обструктивной болезнью легких различной степени тяжести в стадии обострения / Ю.С. Панасенкова, И.И. Павлюченко, Е.А. Коков [и др.] // Кубанский научный медицинский вестник. -2015. -№ 4(153). -C. 106–109.
- 29. Раджабова, Г.Б. Современное представление патогенеза хронической обструктивной болезни легких в коморбидности / Г.Б. Раджабова, Ш.Ш. Ганиева // Oriental renaissance: Innovative, educational, natural and social sciences. 2022. Т. 2. 826—834.

- 30. Роль генетических факторов в вероятности развития сахарного диабета 2-го типа / Е.С. Агеева, Ю.И. Шрамко, А.В. Кубышкин [и др.] // Анализ риска здоровью. -2024. -№ 3. С. 167–182.
- 31. Роль генетического полиморфизма в развитии инфаркта миокарда среди мужчин из республики беларусь / А.Г. Булгак, И.Б. Моссэ, О.В. Зотова [и др.] // Медико-биологические проблемы жизнедеятельности. 2021. № 1. С. 102—112.
- 32. Роль полиморфных вариантов генов цитохромов P450, а также генов GSTP1 и MDR1 в развитии токсических осложнений при проведении программной противоопухолевой лекарственной терапии у пациентов с классической лимфомой Ходжкина / Я.Ю. Шебуняева, О.Б. Горева, М.С. Войтко [и др.] // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. − 2024. − Т. 17. − № 2. − С. 141–153.
- 33. Роль сигнальных путей, вовлечённых в механизмы клеточного старения, и регуляторных некодирующих РНК в развитии хронической обструктивной болезни лёгких / В.А. Маркелов, Г.Ф. Корытина, Ю.Г. Азнабаева [и др.] // Гены и клетки. − 2023. − Т. 18. − № 2. − С. 93–108.
- 34. Седашкина, О.А. Генетические факторы прогрессирования заболеваний почек у детей: основа персонализированного подхода к фармаконефропротекции (обзор литературы) / О.А. Седашкина, Г.Ю. Порецкова, Г.А. Маковецкая // Педиатрия Восточная Европа. 2024. Т. 12. № 1. С. 86–95.
- 35. Сергеев, Д.О. Хроническая обструктивная болезнь легких: связь с полом, возрастом и курением, возможные осложнения / Д.О. Сергеев, Д.Е. Зарытова, О.А. Шестопалова // Проблемы и перспективы развития современной медицины: сборник научных статей XVI Республиканской научнопрактической конференции с международным участием студентов и молодых ученых. 22—23 мая 2024 г. Гомель: ГомГМУ, 2024. Т. 7. С. 199—201.
- 36. Система антиоксидантной защиты: регуляция метаболических процессов, генетические детерминанты, методы определения / О.А. Никитина, М.А. Даренская, Н.В. Семёнова [и др.] // Сибирский научный медицинский журнал. -2022. Т. 42. № 3. С. 4-17.

- 37. Современные представления о роли иммунного статуса и гемостаза в патогенезе сепсиса / М.В. Осиков, Л.Ф. Телешева, А.Г. Конашов [и др.] // Acta Biomedica Scientifica. 2025. Vol. 9. № 6. С. 118–129.
- 38. Состояние процессов свободнорадикального окисления и антиоксидантной защиты в миоме матки и в эндометриоидной аденокарциноме в зависимости от ее степени дифференцировки / Е.И. Сурикова, Е.М. Франциянц, И.В. Каплиева [и др.] // Южнороссийский онкологический журнал. 2025. Т. 6.-N 1. С. 50—59.
- 39. Сычев, Д.А. Генетические факторы риска развития нежелательных лекарственных реакций / Д.А. Сычев, М.С. Черняева, О.Д. Остроумова // Безопасность и риск фармакотерапии. 2022. Т. 10. № 1. С. 48–64.
- 40. Хидирова, Л.Д. Оценка приверженности к терапии у коморбидных больных / Л.Д. Хидирова, Д.А. Яхонтов, П.Г. Мадонов // Артериальная гипертензия. 2023. Т. 29. № 1. С. 109–118.
- 41. Хроническая обструктивная болезнь легких В сочетании клинико-функциональные эссенциальной артериальной гипертензией: особенности / И.С. молекулярно-генетические Шпагин, O.C. Т.И. Поспелова [и др.] // Вестник современной клинической медицины. – 2016. – T. 9. $- N_{2} 4$. - C. 56-65.
- 42. Чаулин, А.М. Коморбидность хронической обструктивной болезни легких и сердечно-сосудистых заболеваний / А.М. Чаулин, Д.В. Дупляков // Кардиоваскулярная терапия и профилактика. 2021. Т. 20. № 3. С. 91–99.
- 43. Эффективность комплексной терапии при коморбидности артериальной гипертонии и хронической обструктивной болезни легких / И.Г. Меньшикова, Е.В. Магаляс, И.В. Скляр [и др.] // Амурский медицинский журнал. 2021. № 1. С. 49–53.
- 44. A genetic variant in IL-6 lowering its expression is protective for critical patients with COVID-19 / B. Gong, L. Huang, Y. He [et al.] // Signal Transduction and Targeted Therapy. $-2022. \text{Vol. } 7. \cancel{N}2 \ 1. \text{P. } 112.$

- 45. A Study on Interleukin-10-1082 G/A (rs1800896) Polymorphism in Acute Lymphoblastic Leukemia Patients / M. Ejaz, I.R. Malik, N. Mahmood [et al.] // Pakistan J. Zool. 2025. P. 1–8.
- 46. Al Zoubi, M. Polymorphisms, antioxidant genes, and cancer / M. Al Zoubi, A. Aljabali // Cancer. Academic Press, 2021. P. 101–110.
- 47. Aldosterone, inflammation, immune system, and hypertension / N.S. Ferreira, R.C. Tostes, P. Paradis [et al.] // American journal of hypertension. $-2021.-Vol.\ 34.-No.\ 1.-P.\ 15-27.$
- 48. Ali, A. Protective Effects of Interleukin-6 (174G/C) and Tumor Necrosis Factor- α (G308A) Gene Polymorphisms and Risk-Associated Role of Interleukin-4 (C590T) and Interleukin-13 (rs20541) Gene Variants in patients with Chronic Rhinosinusitis with Nasal Polyps / A. Ali, M. Haider, M. Al-Ahmad // Journal of Allergy and Clinical Immunology. -2025. Vol. 155. No 2. P. AB75.
- 49. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population / R. Sukprasong, S. Chuwongwattana, N. Koomdee [et al.] // Scientific Reports. -2021. Vol. 11. No 1. P. 12343.
- 50. Alu insertion polymorphisms and susceptibility to metabolic syndrome in a Moroccan population / H. Farhane, M. Motrane, K. Soufaine [et al.] // Egyptian Journal of Medical Human Genetics. -2025. Vol. 26. No 1. P. 3.
- 51. Amromina A.M. The relationship of polymorphic variants of genes GSTM1, GSTP1 with the risk of developing diseases (literature review) / A.M. Amromina, I.A. Sitnikov, D.R. Shaikhova // Hygiene and Sanitation. − 2021. − Vol. 100. − № 12. − P. 1385–1390.
- 52. E.W. Ali. Angiotensin-converting Enzyme Insertion/Deletion Polymorphism (rs4646994) and Susceptibility to Acute Lymphoblastic Leukemia: A Case–control Study // Open Access Macedonian Journal of Medical Sciences. 2022. Vol. 10. N_{\odot} B. P. 997–1001.
- 53. Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients a review / E. Cecerska-Heryć, O. Surowska, R. Heryć [et al.] // Clinical biochemistry. 2021. Vol. 93. P. 1–8.

- 54. Arterial remodelling in smokers and in patients with small airway disease and COPD: implications for lung physiology and early origins of pulmonary hypertension / P. Bhattarai, W. Lu, A.V. Gaikwad [et al.] // ERJ open research. $-2022.-Vol.~8.-N_{\odot}~4.$
- 55. Association between systemic immunity-inflammation index and hypertension in US adults from NHANES 1999–2018 / Y. Chen, Y. Li, M. Liu [et al.] // Scientific Reports. -2024. Vol. 14. No 1. P. 5677.
- 56. Association of ACE*(Insertion/Deletion) variant with the elevated risk of preeclampsia among gestational women / E.F. El Azab, R.G. Abd El-kader, T.M. Elhassan [et al.] // Biochemical Genetics. 2024. Vol. 62. № 5. P. 3774–3802.
- 57. Association of GSTP1 p. Ile105Val (rs1695, c. 313A > G) variant with the risk of breast carcinoma among Egyptian women / M.M. Youssef, A.M. Elsaid, R.A. El-Saeed [et al.] // Biochemical Genetics. -2021. Vol. 59. № 6. P. 1487–1505.
- 58. Association of Interleukin-6 (rs1800795) and Interleukin-10 (rs1800896) Genetic Polymorphisms with the Outcome of COVID-19 Infection: A Single Center Study / M. El-Bendary, M. Naemattalah, H. Elalfy [et al.] // Viral Immunology. 2024. Vol. 37. No. 5. P. 251-258.
- 59. Association of TNF– α rs1800629 with Adult Acute B-Cell Lymphoblastic Leukemia / E.K. Abdalhabib, A. Algarni, M. Saboor [et al.] // Genes. 2022. Vol. 13. N_{2} 7. P. 1237.
- 60. Association of TNF- α -308 G > A (rs1800629) polymorphism with susceptibility of metabolic syndrome / D. Ghareeb, A.S. Abdelazem, E.M. Hussein [et al.] // Journal of Diabetes & Metabolic Disorders. 2021. Vol. 20. P. 209–215.
- 61. Averill-Bates, D.A. The antioxidant glutathione // Vitamins and hormones. Academic Press, 2023. Vol. 121. P. 109–141.
- 62. Bajwa, E. Neuroinflammation as a mechanism linking hypertension with the increased risk of Alzheimer's disease / E. Bajwa, A. Klegeris // Neural Regeneration Research. 2022. Vol. 17. № 11. P. 2342–2346.

- 63. Cardiac structure and function and diabetes-related risk of death or heart failure in older adults / R.M. Inciardi, B. Claggett, D.K. Gupta [et al.] // Journal of the American Heart Association. 2022. Vol. 11. N = 6. P. e022308.
- 64. Cardiovascular disease and risk in COPD: a state of the art review / R. Polman, J.R. Hurst, O.F. Uysal [et al.] // Expert review of cardiovascular therapy. -2024. Vol. 22. N 24-5. P. 177-191.
- 65. Cho, M.H. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder / M.H. Cho, B.D. Hobbs, E.K. Silverman // The Lancet Respiratory Medicine. -2022. Vol. 10. No 5. P. 485–496.
- 66. Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update / C.R. Lee, L. Wang, P. Jiang [et al.] // Clinical pharmacology & therapeutics. $-2022.-Vol.\ 112.-No.\ 5.-P.\ 959-967.$
- 67. Cordingley D.M. Anti-inflammatory and anti-catabolic effects of creatine supplementation: a brief review / D.M. Cordingley, S.M. Cornish, D.G. Candow // Nutrients. -2022. Vol. 14. No 2. P. 44.
- 68. Correlation between hs-CRP, IL-6, IL-10, ET-1, and Chronic Obstructive Pulmonary Disease Combined with Pulmonary Hypertension / D. Yang, L. Wang, P. Jiang [et al.] // Journal of healthcare engineering. − 2022. − № 1. − P. 3247807.
- 69. CYP2C8, CYP2C9, and CYP2C19 characterization using next-generation sequencing and haplotype analysis: a GeT-RM collaborative project / A. Gaedigk, E.C. Boone, S.E. Scherer [et al.] // The Journal of Molecular Diagnostics. -2022. Vol. 24. N = 4. P. 337-350.
- 70. CYP3A4* 22 genotyping in clinical practice: ready for implementation? / T.A.M. Mulder, R.A. van Eerden, M. de With [et al.] // Frontiers in genetics. 2021. Vol. 12. P. 711943.
- 71. Effect of crocin of Crocus sativus L. on serum inflammatory markers (IL-6 and TNF- α) in chronic obstructive pulmonary disease patients: a randomised, double-blind, placebo-controlled trial / M.R. Aslani, N. Abdollahi, S. Matin [et al.] // British Journal of Nutrition. -2023. Vol. 130. No 200 3. P. 200 446–453.

- 72. Effectiveness of treatment of arterial hypertension in Central Europe from 1972 to 2022 / A. Taniwall, J. Broz, M. Lustigova [et al.] // Bratislava Medical Journal (Bratislavské lekárske listy). − 2024. − № 5.
- 73. Effects of Psidium guajava leaves extract on blood pressure control and IL-10 production in salt-dependent hypertensive rats / D.C. de Assis Braga, P.M. Gomes, M.A.C. Batista [et al.] // Biomedicine & Pharmacotherapy. 2022. Vol. 155. P. 113796.
- 74. Endothelial dysfunction and its relation in different disorders: Recent update / A. Ray, K.C. Maharana, S. Meenakshi [et al.] // Health Sciences Review. 2023. Vol. 7. P. 100084.
- 75. Estimating the global prevalence of chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis / N. Al Wachami, M. Guennouni, Y. Iderdar [et al.] // BMC Public Health. − 2024. − Vol. 24. − № 1. − P. 297.
- 76. Farasani, A. A case-control study in NAT2 gene polymorphism studies in patients diagnosed with acute myeloid leukemia // Acta Biochimica Polonica. -2023. Vol. 70. N 3. P. 503-507.
- 77. Gallo, G. Endothelial dysfunction in hypertension: current concepts and clinical implications / G. Gallo, M. Volpe, C. Savoia // Frontiers in medicine. 2022. Vol. 8. P. 798958.
- 78. Genetic Polymorphisms of Genes Coding for Cytokines, IL6-174G > C (rs1800795) and IL10-1082A > G (rs1800896), in Cervical Insufficiency / N. Karakus, S. Gulucu, M. Onal [et al.]. 2024. https://doi.org/10.21203/rs.3.rs-4471223/v1.
- 79. Harun-Or-Roshid, M. Genetic Variant rs1800795 (G > C) in the Interleukin 6 (IL6) Gene and Susceptibility to Coronary Artery Diseases, Type 2 Diabetes, Acute Pancreatitis, Rheumatoid Arthritis, and Bronchial Asthma in Asians: A Comprehensive Meta-Analysis Based on 30154 Subjects / M. Harun-Or-Roshid, M.N.H. Mollah // Medinformatics. -2024. Vol. 1. No 2. P. 91–101.
- 80. Huang, S. Exploring the Molecular Mechanism and Role of Glutathione S-Transferase P in Prostate Cancer / S. Huang, H. Yin // Biomedicines. -2025. T. $13. N_{\odot} 5. -$ C. 1051.

- 81. GSTP1 rs4147581 C > G and NLRP3 rs3806265 T > C as Risk Factors for Chronic Obstructive Pulmonary Disease: A Case-Control Study / H. Li, R. Wang, X. Wei [et al.] // International Journal of Chronic Obstructive Pulmonary Disease. 2024. P. 489–500.
- 82. Harrison, D.G. Immune mechanisms in hypertension / D.G. Harrison, D.M. Patrick // Hypertension. 2024. Vol. 81. № 8. P. 1659–1674.
- 83. Harrison, D.G. Pathophysiology of hypertension: the mosaic theory and beyond / D.G. Harrison, T.M. Coffman, C.S. Wilcox // Circulation research. 2021. Vol. 128. № 7. P. 847–863.
- 84. Hengel, F.E. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension / F.E. Hengel, J.P. Benitah, U.O. Wenzel // Cellular & molecular immunology. -2022. Vol. 19. № 5. P. 561–576.
- 85. Hypertension genetics past, present and future applications / K.J. Olczak, V. Taylor-Bateman, H. L. Nicholls [et al.] // Journal of internal medicine. 2021. Vol. 290. № 6. P. 1130–1152.
- 86. Hypertension: do inflammation and immunity hold the key to solving this epidemic? / M.S. Madhur, F. Elijovich, M.R. Alexander [et al.] // Circulation research. $-2021.-Vol.\ 128.-No.\ 7.-P.\ 908-933.$
- 87. IL-10 and IL-1β Serum Levels, Genetic Variants, and Metabolic Syndrome: Insights into Older Adults' Clinical Characteristics / R.S. Freitas, C.M. de Souza Silva, C. Ferreira Fratelli [et al.] // Nutrients. 2024. Vol. 16. № 8. P. 1241.
- 88. IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma / J. Xu, H. Lin, G. Wu [et al.] // Frontiers in oncology. 2021. Vol. 11. P. 760971.
- 89. Immune and inflammatory mechanisms in hypertension / T.J. Guzik, R. Nosalski, P. Maffia [et al.] // Nature Reviews Cardiology. − 2024. − Vol. 21. − № 6. − P. 396–416.
- 90. Immunity and hypertension / R.M. Zhang, K.P. McNerney, A.E. Riek [et al.] // Acta Physiologica. 2021. Vol. 231. № 1. P. e13487.
- 91. Immunomodulatory activity of cytokines in hypertension: a vascular perspective / R.R. dos Passos, C.V. Santos, F. Priviero [et al.] // Hypertension. -2024. T. 81. No 2. C. 1411-1423.

- 92. Impacts of Interleukin-10 Promoter Genotypes on Prostate Cancer / Y.T. Chin, C.L. Tsai, H.H. Ma [et al.] // Life. 2024. Vol. 14. № 8. P. 1035.
- 93. Implications and relative importance of GSTP1, GSTM1, and GSTT1 polymorphisms in the prevalence and severity of prostate cancer in an Eastern Indian Population / S. Roy, A. Dasgupta, T. Mondal [et al.] // Medical Journal of Dr. DY Patil Vidyapeeth. -2023. Vol. 16. No 1. P. 47–55.
- 94. Kerget, F. Frequency of interleukin-6 rs1800795 (-174G/C) and rs1800797 (-597G/A) polymorphisms in COVID-19 patients in Turkey who develop macrophage activation syndrome / F. Kerget, B. Kerget // Japanese journal of infectious diseases. $2021. \text{Vol.} 74. \text{N} \underline{\circ} 6. \text{P.} 543-548.$
- 95. Khurana, V. Angiotensin converting enzyme (ACE) / V. Khurana, B. Goswami // Clinica chimica acta. 2022. Vol. 524. P. 113–122.
- 96. Koopmans A.B. Meta-analysis of probability estimates of worldwide variation of CYP2D6 and CYP2C19 / A.B. Koopmans, M.H. Braakman, D.J. Vinkers [et al.] // Translational psychiatry. -2021. Vol. 11. N 21. P. 141.
- 97. Li, X.F. Analysis of pathogenesis and drug treatment of chronic obstructive pulmonary disease complicated with cardiovascular disease / X.F. Li, C.Q. Wan, Y.M. Mao // Frontiers in medicine. 2022. Vol. 9. P. 979959.
- 98. Mechanisms and clinical implications of endothelial dysfunction in arterial hypertension / P. Ambrosino, T. Bachetti, S.E. D'Anna [et al.] // Journal of cardiovascular development and disease. -2022. Vol. 9. N 2. P. 136.
- 99. Mechanisms of oxidative stress in metabolic syndrome / S.K. Masenga, L.S. Kabwe, M. Chakulya [et al.] // International journal of molecular sciences. 2023. Vol. 24. № 9. P. 7898.
- 100. Mechanisms, pathophysiology and currently proposed treatments of chronic obstructive pulmonary disease / S.O. Rodrigues, C. M. C. D. Cunha, G.M.V. Soares [et al.] // Pharmaceuticals. $-2021.-Vol.\ 14.-No.\ 10.-P.\ 979.$
- 101. Mir, M.A. The Role of Interleukin (IL)-6/IL-6 Receptor Axis in Cancer / M.A. Mir, M. Bashir, N. Jan // Cytokine and Chemokine Networks in Cancer. Singapore: Springer Nature Singapore. 2023. P. 137–164.

- 102. Mirlekar B. Tumor promoting roles of IL-10, TGF- β , IL-4, and IL-35: Its implications in cancer immunotherapy // SAGE open medicine. -2022.- Vol. 10. P. 20503121211069012.
- 103. Molecular genetics of essential hypertension / M. Singh [et al.] // Clinical and experimental hypertension. -2016. Vol. 38. N @ 3. P. 268-277.
- 104. NADPH oxidase family proteins: signaling dynamics to disease management / R. Begum, S. Thota, A. Abdulkadir [et al.] // Cellular & Molecular Immunology. -2022. Vol. 19. No 6. P. 660–686.
- 105. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology / A. Vermot, I. Petit-Härtlein, S.M. Smith [et al.] // Antioxidants. $-2021. \text{Vol}.\ 10. \text{N}_{\text{2}}\ 6. \text{P}.\ 890.$
- 106. Oxidative stress and air pollution: its impact on chronic respiratory diseases / M.P. Sierra-Vargas, J.M. Montero-Vargas, Y. Debray-García [et al.] // International Journal of Molecular Sciences. − 2023. − Vol. 24. − № 1. − P. 853.
- 107. Oxidative stress and reactive oxygen species in otorhinolaryngological diseases: insights from pathophysiology to targeted antioxidant therapies / L. Meng, S. Liu, J. Luo [et al.] // Redox Report. -2025. Vol. 30. No 1. P. 2458942.
- 108. Oxidative stress in Alzheimer's disease: current knowledge of signaling pathways and therapeutics / R. Dhapola, S.K. Beura, P. Sharma [et al.] // Molecular biology reports. -2024. -Vol. 51. -No 1. -P. 48.
- 109. Oxidative stress in diabetes mellitus and its complications: From pathophysiology to the rapeutic strategies / X. Chen, N. Xie, L. Feng [et al.] // Chinese Medical Journal. -2025. Vol. 138. No 1. P. 15–27.
- 110. Oxidative-stress-related genes in osteoporosis: a systematic review /
 G. León-Reyes, A.D. Argoty-Pantoja, A. Becerra-Cervera [et al.] // Antioxidants. –
 2023. Vol. 12. № 4. P. 915.

- 112. Pathophysiology of the Effects of Oxidative Stress on the Skeletal System / I. Shinohara, M. Morita, S.K.H. Chow [et al.] // Journal of Orthopaedic Research. $-2025.-Vol.\ 43.-No.\ 6.-P.\ 1059-1072.$
- 113. Rahman, F. Current concepts and molecular mechanisms in pharmacogenetics of essential hypertension / F. Rahman, N. Muthaiah, G. Kumaramanickavel // Indian Journal of Pharmacology. 2021. Vol. 53. № 4. P. 301–309.
- 114. Relevance of gene polymorphisms of NAT2 and NR1I2 to anti-tuberculosis drug-induced hepatotoxicity / N. Wang, S. Guo, H. Liu [et al.] // Xenobiotica. -2022. Vol. $52. N_{\odot} 5. P. 520-526.$
- 115. Role of pharmacogenetics in the treatment of acute myeloid leukemia: systematic review and future perspectives / A. Pinto-Merino, J. Labrador, P. Zubiaur [et al.] //Pharmaceutics. -2022. Vol. 14. No 2. P. 559.
- 116. Rose-John, S. Therapeutic targeting of IL-6 trans-signaling // Cytokine. 2021. Vol. 144. P. 155577.
- 117. Sekar, P.K.C. Association of tumor necrosis factor α (rs1800629) and interleukin-10 (rs1800896) gene polymorphisms with systemic lupus erythematosus: a meta-analysis / P.K.C. Sekar, R.Veerabathiran // Reumatologia. 2025. Vol. 63. $N_{\rm P}$ 1. P. 41–53.
- 118. Singh, S. Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders / S. Singh, A. Ahuja, S. Pathak // Combinatorial Chemistry & High Throughput Screening. 2024. Vol. 27. № 14. P. 2043–2061.
- 119. Stavros S. Association between cytokine polymorphisms and recurrent pregnancy loss: A review of current evidence / S. Stavro, P. Panagopoulos, N. Machairiotis [et al.] // International Journal of Gynecology & Obstetrics. -2024. Vol. 167. No 1. P. 45–57.
- 120. Sterubin protects against chemically-induced Alzheimer's disease by reducing biomarkers of inflammation-IL-6/IL- β /TNF- α and oxidative stress-SOD/MDA in rats / I. Kazmi, F.A. Al-Abbasi, M. Afzal [et al.] // Saudi Journal of Biological Sciences. -2023. Vol. 30. No 2. P. 103560.

- 121. Targeting Nrf2/KEAP1 signaling pathway using bioactive compounds to combat mastitis / M.Z. Khan, L. Li, Y. Zhan [et al.] // Frontiers in Immunology. 2025. Vol. 16. P. 1425901.
- 122. The algorithm for the treatment of patients with treatment-resistant hypertension at the outpatient stage / O.S. Kulbachuk, E.V. Sid, O.V. Soloviov // Modern medical technology. -2023. No. 1. P. 69-73.
- 123. The clinical significance of T-cell regulation in hypertension treatment / M. Fu, M. Lv, J. Guo [et al.] // Frontiers in Immunology. 2025. Vol. 16. P. 1550206.
- 124. The combined effect between environmental exposure and oxidative stress-related susceptible gene polymorphisms on human semen quality / S. Wu, R. Yang, H. Bao [et al.] // Journal of Assisted Reproduction and Genetics. 2025. P. 1–13.
- 125. The diagnosis and treatment of COPD and its comorbidities / K. Kahnert, R.A. Jörres, J. Behr [et al.] // Deutsches Ärzteblatt International. -2023. Vol. 120. No 25. P. 434.
- 126. The gut microbiome and hypertension / J.A. O'Donnell, T. Zheng, G. Meric [et al.] // Nature Reviews Nephrology. 2023. Vol. 19. № 3. P. 153–167.
- 127. The IL-6 rs1800795 and rs1800796 polymorphisms are associated with coronary artery disease risk / S. Lu, Y. Wang, Y. Wang [et al.] // Journal of cellular and molecular medicine. $-2020. \text{Vol.} 24. \cancel{N}_{2} 11. \text{P.} 6191-6207.$
- 128. The N-Acetyltransferase 2 Polymorphism and Susceptibility to Inflammatory Bowel Disease: A Case–Control Study / P. Petryszyn, G. Zurakowski, R. Dudkowiak [et al.] // Pharmacology Research & Perspectives. -2025. Vol. 13. No 1. P. e70040.
- 129. The NF- κ B signaling system in the immunopathogenesis of inflammatory bowel disease / T. Mukherjee, N. Kumar, M. Chawla [et al.] // Science Signaling. 2024. Vol. 17. N0 818. P. 1641.

- 130. The polymorphism of catalase gene C-262T: Impact on ulcerative colitis / N.N. Mohammadi, H. Bağcı, T. Ayyıldız [et al.] // Journal of Experimental and Clinical Medicine. 2025. Vol. 42. № 1. P. 43–47.
- 131. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke / G. Xu, F. Dong, L. Su [et al.] // Biomedicine & Pharmacotherapy. 2024. Vol. 171. P. 116140.
- 132. The role of creatine in the development and activation of immune responses / E.C. Bredahl, J.M. Eckerson, S.M. Tracy [et al.] // Nutrients. -2021. T.13. No.3. P.751.
- 133. The role of IL-6 and IL-6 blockade in COVID-19 / N. Potere, A. Batticciotto, A. Vecchié [et al.] // Expert review of clinical immunology. 2021. Vol. 17. № 6. P. 601–618.
- 134. The role of TNF- α and il-6 SNP in polycystic ovary syndrome susceptibility / B.M. RaheemRaheem, R.M. Obaid, B.R. Ali [et al.] // Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego. 2024. Vol. 52. N_2 3. P. 286–291.
- 135. The vasoconstrictor adenosine 5'-tetraphosphate is a danger signal that induces IL-1 β / J. Bockstiegel, J. Engelhardt, M. Schuchardt [et al.] // Molecular Medicine. -2025. Vol. 31. No 20.
- 136. TNF-alfa Gene Polymorphism Associations with Multiple Sclerosis / L. Kalvaitis, G. Gedvilaite-Vaicechauskiene, L. Kriauciuniene [et al.] // Journal of Clinical Medicine. 2024. Vol. 13. № 13. P. 3693.

СПИСОК ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА

Рисунок 1 – Основные источники АФК в организме человека	
Рисунок 2 – Схема реакции, катализируемая супероксиддисмутазой	
(https://biokhimija.ru/oxidative-stress/aktivatsiya-kisloroda.html)	9
Рисунок 3 – Реакция, катализируемая каталазой (https://biokhimija.ru/	
oxidative-stress/aktivatsiya-kisloroda.html)	0
Рисунок 4 – Антиоксидантная реакция, катализируемая глутатион-S-	
трансферазой (https://biokhimija.ru/oxidative-stress/aktivatsiya-kisloroda.html) 20	0
Рисунок 5 – Расположение гена ACE (www.genecards.org)	0
Рисунок 6 – Расположение гена SOD1 (www.genecards.org)	1
Рисунок 7 – Расположение гена GSTP1 (www.genecards.org)	1
Рисунок 8 – Расположение гена NAT2 (www.genecards.org)	2
Рисунок 9 – Расположение гена NAT2 (www.genecards.org)	3
Рисунок 10 – Расположение гена CYP2C19 (www.genecards.org) 34	4
Рисунок 11 – Расположение гена IL 6 (www.genecards.org)	5
Рисунок 12 – Расположение гена IL 6 (www.genecards.org)	5
Рисунок 13 – Расположение гена TNF-а (www.genecards.org)	6
Рисунок 14 – Дизайн исследования	.0
Таблица 1 – Сравнительная клиническая характеристика исследуемых групп 4	.1
Таблица 2 — Общие клинико-лабораторные показатели у исследуемых групп	
пациентов	-2
Рисунок 15 — Спектрофотометр Picodrop Pico200	.5
Рисунок 16 – Амплификаторе «Rotor-Gene Q»	.9
Таблица 3 – Параметры амплификации	0
Рисунок 17 – Пример гомозиготного варианта по аллели 1 исследуемого	
образца ДНК 52	2
Рисунок 18 – Пример гетерозиготного варианта исследуемого образца ДНК 53	3
Рисунок 19 – Пример гомозиготного варианта по аллели 2 исследуемого	
образца ДНК 54	4

Таблица 4 – Программа амплификации	55
Рисунок 20 – Аппарат для электрофореза	55
Рисунок 21 — УФ-трансиллюминатора QUANTUM-ST4 1100-26M	56
Рисунок 22 – Пример результатов генотипирования, проведенного с	
помощью метода ПЦР на оборудовании «Терцик» с последующей	
электрофоретической детекцией	56
Таблица 5 – Показатели системы про-/антиоксиданты у исследуемых групп	
пациентов	62
Рисунок 23 – Уровень МДА, мкМоль/л у исследуемых групп пациентов	63
Рисунок 24 – Уровень активности Г-S-T, мМоль/мин/мг Hb у исследуемых	
групп пациентов	63
Рисунок 25 – Уровень активности КАТ, нМоль H2O2/мг Hb у исследуемых	
групп пациентов	64
Рисунок 26 – Уровень активности СОД, ус.ед у исследуемых групп	
пациентов	64
Таблица 6 – Характеристика исследуемых однонуклеотидных полиморфных	
вариантов	67
Рисунок 27 — Влияние полиморфизм гена -174 C > G IL 6, rs1800795 на	
экспрессию гена IL6-AS1 (http://www.gtexportal.org/)	68
Рисунок 28 – Влияние полиморфизма гена -313A > G GSTP1, rs1695 на	
экспрессию (http://www.gtexportal.org/)	69
Рисунок 29 — Влияние полиморфизма гена -341C > T GSTP1, rs1138272 на	
экспрессию (http://www.gtexportal.org/)	70
Рисунок 30 — Влияние полиморфизма гена -7958 G > A SOD1, rs4998557 на	
экспрессию. (http://www.gtexportal.org/)	70
Рисунок 31 — Влияние полиморфизма гена -681G > A CYP2C19, rs4244285 на	
экспрессию. (http://www.gtexportal.org/)	71
Рисунок 32 — Межбелковые связи по базе данных STRING (http://string-	
db.org)	72
Таблица 7 – Виды биологических путей в соответствии с базой данных Gene	
Ontology (https://geneontology.org/)	73

Гаолица 8 – Распределение генотипов полиморфизмов генов AO3 у	
исследуемых групп и группы контроля	75
Таблица 9 – Распределение генотипов полиморфизмов гена АСЕ у	
исследуемых групп и группы контроля	79
Таблица 10 – Распределение генотипов полиморфизмов генов иммунной	
системы у исследуемых групп	80
Таблица 11 – Биохимические показатели крови в зависимости от генотипов	
полиморфизма генов -313A > G GSTP1 у пациентов в 1-й группе	
исследования (АГ без ХОБЛ)	84
Рисунок 33 – Уровень АЛТ, Ед/л в зависимости от генотипов	
полиморфизма -313A > G GSTP1 у пациентов в 1-й группе исследования	
(АГ без ХОБЛ)	85
Рисунок 34 – Уровень АСТ, Ед/л в зависимости от генотипов	
полиморфизма -313A > G GSTP1 у пациентов в 1-й группе исследования	
(АГ без ХОБЛ)	85
Таблица 12 – Показатели системы про-/антиоксидантны в зависимости от	
генотипов полиморфизма гена -174C > G IL 6 у пациентов в 1-й группе	
исследования (АГ без ХОБЛ)	86
Рисунок 35 – Показатели системы про-/антиоксидантны в зависимости от	
генотипов полиморфизма гена -174C > G IL 6 у пациентов в 1-й группе	
исследования (АГ без ХОБЛ)	87
Таблица 13 – Биохимические показатели крови в зависимости от генотипов	
полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе	
исследования (АГ на фоне ХОБЛ)	89
Таблица 14 – Показатели общего анализа крови в зависимости от генотипов	
полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе	
исследования (АГ на фоне ХОБЛ)	89
Рисунок 36 – Уровень эритроцитов*10 ¹² /л в зависимости от генотипов	
полиморфизма гена -308 $G > A$ TNF-а у пациентов во 2-й группе	
исследования (АГ на фоне ХОБЛ)	90

Рисунок 37 – Уровень гемоглобина г/л в зависимости от генотипов
полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе
исследования (АГ на фоне ХОБЛ)
Рисунок 38 – Уровень С-реактивного белка в зависимости от генотипов
полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе
исследования (АГ на фоне ХОБЛ)
Рисунок 39 – Уровень АЛТ и АСТ, Ед/л в зависимости от генотипов
полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе
исследования (АГ на фоне ХОБЛ)
Рисунок 40 – Уровень креатинина, ммоль/л в зависимости от генотипов
полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе
исследования (АГ на фоне ХОБЛ)
Рисунок 41 – Уровень мочевины, ммоль/л в зависимости от генотипов
полиморфизма гена -308G > A TNF-а у пациентов во 2-й группе
исследования (АГ на фоне ХОБЛ)
Таблица 15 – Показатели системы про-/антиоксидантны в зависимости от
генотипов полиморфизма гена -308G > A TNF-а у пациентов во 2-й
группе исследования (АГ на фоне ХОБЛ)
Рисунок 42 – Показатели системы про-/антиоксидантны в зависимости от
генотипов полиморфизма -308G > A TNF-а у пациентов во 2-й группе
исследования (АГ на фоне ХОБЛ)
Таблица 16 – Показатели системы про- /антиоксидантны в зависимости от
генотипов полиморфизма генов -174C > G IL 6 у пациентов в 3-й группе
исследования (XOБЛ без AГ)
Рисунок 43 – Показатели системы про-/антиоксидантны в зависимости от
генотипов полиморфизма -174C > G IL 6 у пациентов 3-й группе
исследования (ХОБЛ без АГ)
Рисунок 44 — Реакция Фентона и Хабер-Вайса (https://biokhimija.ru/oxidative-
stress/aktivatsiya-kisloroda.html)

приложения

Приложение А

Акты об использовании предложений

ФРБОУ ВО КубГМУ

Минаписана России

Т.В. Гайворонская

2025

АКТ О ВНЕДРЕНИИ

Предмет внедрения: материалы научно-квалификационной работы: «Полиморфизмы генов и особенности метаболических сдвигов у пациентов с коморбидной формой артериальной гипертензией и хронической обструктивной болезнью легких».

Кем предложен: ассистентом кафедры биологии с курсом медицинской генетики ФГБОУ ВО КубГМУ Минздрава России Прозоровской Ю.И., Источник информации: научно-квалификационной работы: «Полиморфизмы генов и особенности метаболических сдвигов у пациентов с коморбидной формой артериальной гипертензией и хронической обструктивной болезнью легких») – Краснодар, 2024

Где и кем внедрено: г. Краснодар, федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации», кафедрой биологии с курсом медицинской генетики.

Цель внедрения: включение инновационной составляющей материалов НКР в курс лекций и практических занятий кафедры биологии с курсом медицинской генетики.

Результаты внедрения: приобретение знаний, умений и навыков, необходимых в области понимания теоретических и практических вопросов генетике и патобиохимии мультифакториальных заболеваний.

Эффективность внедрения: совершенствование учебного процесса и получение новых данных студентами и ординаторами кафедры биологии с курсом медицинской генетики.

Заведующий кафедрой биологии с курсом медицинской генетики

д.м.н., профессор

И.И. Павлюченко

Ю.И. Прозоровская

Автор предложения:

«УТВЕРЖДАЮ»

осударственно Главный врач

здравный врач

Краевая клиническая

больнына № 2 г. Краснодара» МЗ КК

принципантиров принципантир

АКТ О ВНЕДРЕНИИ

Предмет внедрения: материалы научно-квалификационной работы: «Полиморфизмы генов и особенности метаболических сдвигов у пациентов с коморбидной формой артериальной гипертензией и хронической обструктивной болезнью легких», патент на изобретение RU 2833137 C1 от 14.01.2025 г. (Заявка № 2024101770 от 25.01.2024 г.), база данных (Свидетельство о регистрации базы данных RU2025620536, 30.01.2025 г. Заявка № 2024626466 от 26.12.2024 г.).

Кем предложен: зав. кафедрой биологии с курсом медицинской генетики ФГБОУ ВО КубГМУ МЗ РФ, д.м.н., профессор Павлюченко И.И, ассистентом кафедры биологии с курсом медицинской генетики ФГБОУ ВО КубГМУ Минздрава России Прозоровской Ю.И.

Источник информации: научно-квалификационная работа «Полиморфизмы генов и особенности метаболических сдвигов у пациентов с коморбидной формой артериальной гипертензией и хронической обструктивной болезнью легких») — Краснодар, 2024 г. Патент на изобретение RU 2833137 C1 от 14.01.2025 г. (Заявка №2024101770 от 25.01.2024 г.), база данных (Свидетельство о регистрации базы данных RU2025620536, 30.01.2025 г. Заявка №2024626466 от 26.12.2024 г.).

Где и кем внедрено: г. Краснодар, Государственное бюджетное учреждение здравоохранения «Красвая клиническая больница № 2» министерства здравоохранения Краснодарского края, кардиологическое отделение №2.

Цель внедрения: включение инновационной составляющей материалов научноквалификационной работы, способа прогнозирования развития коморбидной формы артериальной гипертензии при хронической обструктивной болезни легких, данных информационного хранилища полиморфизмов генов систем биотрансформации ксенобиотиков, антиоксидантной защиты, ренин-ангиотензин-альдостероновой и интерлейкинов у пациентов с артериальной гипертензией, хронической обструктивной болезни легких и их коморбидной формой в научно-исследовательский процесс и использование в диагностике пациентов с коморбидной сердечно-сосудистой и бронхолегочной патологией.

Результаты внедрения: приобретение знаний, умений и навыков, необходимых в области понимания теоретических и практических вопросов развития коморбидной сердечно-сосудистой и бронхолегочной патологией и ее особенностей на примере мультифакториального заболевания — $A\Gamma$, ХОБЛ, коморбидная форма $A\Gamma$ на фоне ХОБЛ и подбора оптимальных схем диагностики и лечения.

Эффективность внедрения: Оптимизация диагностики и схем лечения больных с коморбидной сердечно-сосудистой и бронхолегочной патологией.

Заведующий кардиологическим отделением №2

ГБУЗ «Краевая клиническая

больница № 2 г. Краснодара» МЗ КК

С.А. Лурбанов

Авторы предложения:

д.м.н., профессор И.И. Павлюченко,

Ю.И. Прозоровская

Проректор по НИР ФГБОУ ВО КАБГМУ

Минздрава России

А.Н. Редько

2085n

АКТ О ВНЕДРЕНИИ

Предмет внедрения: материалы научно-квалификационной работы: «Полиморфизмы генов и особенности метаболических сдвигов у пациентов с коморбидной формой артериальной гипертензией и хронической обструктивной болезнью легких».

Кем предложен: ассистентом кафедры биологии с курсом медицинской генетики ФГБОУ ВО КубГМУ Минздрава России Прозоровской Ю.И., Источник информации: научно-квалификационной работы: «Полиморфизмы генов и особенности метаболических сдвигов у пациентов с коморбидной формой артериальной гипертензией и хронической обструктивной болезнью легких») – Краснодар, 2024

Где и кем внедрено: г. Краснодар, федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации», кафедрой биологии с курсом медицинской генетики.

Цель внедрения: включение инновационной составляющей материалов НКР в научно-исследовательский процесс и работу лаборатории медицинской генетики кафедры биологии с курсом медицинской генетики.

Результаты внедрения: приобретение знаний, умений и навыков обучающимися и специалистами в области исследований, направленных на совершенствование методов и подходов в прогнозировании, профилактики и диагностики мультифакториальных заболеваний.

Эффективность внедрения: совершенствование НИРС и УИРС на кафедре биологии с курсом медицинской генетики.

Заведующий кафедрой биологии с курсом медицинской генетики

д.м.н., профессор

Автор предложения:

И.И. Павлюченко

Ю.И. Прозоровская

Патенты на изобретение

POCCHILLA DELLEPARINE

RINGLAGINATION RANDINOSOG

*HATEHT

на изобретение № 2833137

Способ прогнозирования развития коморбидной формы артериальной гипертензии при хронической обструктивной болезни легких

Патентообладатель: Прозоровская Юлия Игоревна (RU)

Авторы: Прозоровская Юлия Игоревна (RU), Павлюченко Иван Иванович (RU)

路路路路路路

路路

密

路路

容

斑

容

密

密

斑

密

密

密

路路

斑

密

密

密

斑

斑

密

密

密

密

斑

斑

斑

容

容

斑

斑

路路

容

密

密

密

Заявка № 2024101770

Приоритет изобретения 25 января 2024 г. Дата государственной регистрации в Государственном реестре изобретений Российской Федерации 14 января 2025 г. Срок действия исключительного права на изобретение истекает 25 января 2044 г.

> Руководитель Федеральной службы по интеллектуальной собственности

документ подписанолнектронной подписью
Серпирият (ОКУЖОТО ОКУМОТЬ ИЗОВЕТОВНОЙ ПОДПИСЬЮ
Владова Јубов Юрий Сергеевия
Владова Јубов Орий Сергеевия

Ю.С. Зубов

密路路路路

密

路路

塎

斑

密

密

容

容

密

路路

斑

容

密

容

璨

容

容

容

容

安安

璐

容

安安安安安

容

密

盎

容

斑

容

路

容

斑斑

路

容

容