Урюпина Кристина Владимировна

ОПТИМИЗАЦИЯ ПРОГРАММ ВСПОМОГАТЕЛЬНЫХ РЕПРОДУКТИВНЫХ ТЕХНОЛОГИЙ У ПАЦИЕНТОК ПОЗДНЕГО РЕПРОДУКТИВНОГО ВОЗРАСТА

3.1.4. Акушерство и гинекология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО КубГМУ Минздрава России).

Научный руководитель: доктор медицинских наук, профессор

Куценко Ирина Игоревна.

Официальные оппоненты:

Кулакова Елена Владимировна, доктор медицинских наук, федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации, старший научный сотрудник;

Юрий Алексеевич, профессор, Петров доктор медицинских наук, федеральное государственное бюджетное образовательное учреждение образования «Ростовский государственный медицинский университет» Министерства здравоохранения Российской Федерации, кафедра акушерства и гинекологии № 2, заведующий кафедрой.

Ведущая организация: государственное бюджетное учреждение здравоохранения Московской области «Московский областной научно-исследовательский институт акушерства и гинекологии имени академика В.И. Краснопольского».

Защита состоится «<u>16</u>» декабря 2025 г. в <u>10.00</u> часов на заседании диссертационного совета 21.2.014.03 на базе ФГБОУ ВО КубГМУ Минздрава России (350063 г. Краснодар, ул. им. Митрофана Седина, 4, тел. (861) 2625018).

С диссертацией можно ознакомиться в библиотеке и на сайте (http://www.ksma.ru) ФГБОУ ВО КубГМУ Минздрава России.

Автореферат разослан «___» _____ 2025 года.

Ученый секретарь диссертационного совета 21.2.014.03 доктор медицинских наук, профессор

Карахалис Людмила Юрьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы научного исследования. Осуществление планов деторождения среди женщин старше 35 лет является важнейшей задачей в области современных репродуктивных технологий. В позднем репродуктивном возрасте (ПРВ) постепенно снижается овариальный резерв, сопровождаясь ослабленной реакцией на триггеры овуляции [Wang X., 2023; Долгушина Н.В., 2023; Лунёва И.С., 2019]. Качество ооцитов ухудшается, приводя к уменьшению возможности их оплодотворения и резкому падению качества эмбрионов [Краснопольская К.В., 2021, 2020; Jiang V.S., 2023]. Одной из причин падения способности к зачатию в ПРВ служит снижение морфофункционального статуса эндометрия. Воссоздание нормальной рецептивности эндометрия – проблема, превосходящая по сложности стимуляцию яичников и получение полноценного эмбриона [Оразов М.Р., 2020; Перминова, С.Г., 2022]. Несмотря на активное обсуждение проблем экстракорпорального оплодотворения (ЭКО) у пациенток в ПРВ нет значительного прогресса в повышении эффективности вспомогательных репродуктивных технологий (ВРТ) в данной когорте. Это связано с наличием неучтенных причин, формирующих инфертильность у данных пациенток, индивидуальной сочетаемостью у них различных патогенетических факторов бесплодия и отсутствием персонифицированной стратегии преконцепционной и прегравидарной подготовки (ПГП).

Степень разработанности темы исследования. В настоящее время не существует общего решения проблемы оптимальной тактики ПГП и стимуляции суперовуляции у женщин ПРВ. Даже при получении материала для оплодотворения, современные процедуры **BPT** не ΜΟΓΥΤ преодолеть фундаментальную проблему генетических нарушений, старения ооцитов, анеуплоидий, увеличения количества снижения потенциала развития яйцеклеток у пациенток ПРВ. Патология эмбриона, как причина неудачи имплантации в ПРВ, конкурирует с нарушением рецептивности эндометрия у данных пациенток и трудностями ее восстановлении [Краснопольская К.В., 2019; Аганезов С.С., 2022, Wasielak-Politowska M., 2022; Moghadam A.R.E., 2022]. Многофакторность снижения фертильности, связанная со старением, направленной обусловливает необходимость тщательного изучения коррекции обнаруженных причин на этапе подготовки к циклу ЭКО.

Цель исследования: повышение эффективности программы вспомогательных технологий репродуктивных женщин позднего персонифицированной репродуктивного возраста разработки путем прегравидарной подготовки.

В соответствии с целью исследования поставлены следующие задачи:

- 1. Провести ретроспективный анализ исходов программ ЭКО у женщин позднего репродуктивного возраста с учетом клинико-анамнестических данных, параметров имплантационного фактора, оогенеза и раннего эмбриогенеза.
- 2. Установить основные патогенетические факторы инфертильности и отрицательных попыток ЭКО у пациенток позднего репродуктивного возраста с неудачной попыткой ЭКО и отсутствием отягощенного соматического, гинекологического и акушерского анамнеза.
- 3. Оценить состояние микробиоты, иммуногистохимические параметры, уровень антимикробных белков и цитокиновый статус эндометрия у пациенток позднего репродуктивного возраста с неудачной попыткой ЭКО в анамнезе.
- 4. Установить влияние мелатонинового и оксидантного статусов на состояние овариального резерва, фолликуло- и эмбриогенеза у пациенток позднего репродуктивного возраста.
- 5. Разработать патогенетически обоснованную индивидуализированную программу прегравидарного обследования и подготовки к ЭКО пациенток с бесплодием в позднем репродуктивном возрасте и оценить ее эффективность.

Научная новизна исследования:

- 1. Впервые доказано, что в когорте условно здоровых женщин в позднем репродуктивном периоде наблюдается эпифизарная дисфункция, усугубляющаяся с возрастом, опосредованно приводящая к нарушению функционирования репродуктивной системы и снижающая естественную фертильность и результативность ЭКО.
- 2. Впервые выделено три кластера пациенток, отличающихся по ключевым патогенетическим факторам бесплодия в позднем репродуктивном возрасте: доминирование ооцитарного фактора бесплодия (при достаточном количестве фолликулов и полученных ооцитов, отсутствует оплодотворение ооцитов или получены патологические формы, непригодные к переносу); преобладание имплантационной несостоятельности эндометрия с отсутствием признака «тонкого» эндометрия; сочетание овариального фактора («бедный ответ») и имплантационной несостоятельности эндометрия («тонкий эндометрий»).

- 3. Впервые проведен изолированный забор содержимого матки, который выявил наличие избыточной микробной обсемененности эндометрия, несмотря на отсутствие микрофлоры в содержимом цервикального канала у пациенток с имплантационной недостаточностью эндометрия в отсутствии признаков «тонкого» эндометрия.
- 4. Впервые установлено, что имплантационная несостоятельность эндометрия в отсутствии признаков «тонкого» эндометрия сопровождается наличием иммуногистохимических признаков умеренно выраженного хронического эндометрита с увеличением провоспалительного цитокинового индекса и уровня кателицидина цервикального секрета.
- 5. Впервые выявлено, что наличие «тонкого» эндометрия у пациенток позднего репродуктивного возраста и отсутствие бактериальной обсемененности соотносится со слабо выраженным аутоимунным хроническим эндометритом с максимальным повышением фиброзирующей активности, обеднением ангиогенеза и максимальным снижением имплантационного фактора.
- 6. Доказано, что при наличии сочетания овариального фактора («бедный ответ») и имплантационной несостоятельности эндометрия («тонкий эндометрий») у пациенток максимально снижено содержание мелатонина в периферической крови и фолликулярной жидкости.
- 7. Установлено, что включение в прегравидарную подготовку комплекса водорастворимых полипептидных фракций эпифиза у этих пациенток, улучшает показатели фолликулогенеза и эмбриогенеза, а также опосредовано положительно влияет на имплантационные свойства эндометрия.
- 8. Доказано, что комплексная индивидуализированная прегравидарная подготовка, учитывающая выявление и коррекцию ведущих патогенетических факторов, в целом позволяет повысить эффективность ВРТ у пациенток позднего репродуктивного возраста.

Теоретическая и практическая значимость работы. В результате проведенной работы систематизированы наиболее значимые клинические, микробиологические, иммунологические и иммуногистохимические факторы, в результате чего выделено три кластера пациенток, отличающихся по ключевому патогенетическому фактору бесплодия в позднем репродуктивном возрасте. Расширены и научно обоснованы дополнительные факторы инфертильности в позднем репродуктивном возрасте. Сформулирована концепция о роли эпифизарных дисфункций в формировании возрастных особенностей

функционирования нейрогуморальной регуляции репродуктивной системы, ведущих к угнетению репродуктивной функции. Практическая ценность настоящей работы определяется тем, что с учетом полученных выводов отечественному здравоохранению предлагается программа персонифицированной прегравидарной подготовки к программе ЭКО (диагностический и терапевтический комплекс) у пациенток с бесплодием в позднем репродуктивном периоде, которая позволяет повысить результативность ВРТ.

Методология и методы исследования. Проведение исследования, сбор и обработка полученных данных, выполнялись диссертантом согласно дизайна исследования, с использованием описательного, клинико-лабораторного, диагностического и статистического методов исследования.

Основные положения, выносимые на защиту:

- 1. У пациенток позднего репродуктивного возраста, в отсутствии осложнённого гинекологического и репродуктивного анамнезов, выделены три патогенетических инфертильности: ведущих варианта доминирующий ооцитарный фактор, преобладающая имплантационная несостоятельность хроническим эндометритом ассоциированная с эндометрия, активности на фоне инфицирования эндометрия патогенной и условнопатогенной микрофлорой, сочетание «бедного» овариального ответа с аутоиммунным хроническим эндометритом, что должно учитываться при проведении прегравидарной подготовки.
- 2. Выраженное снижение уровня мелатонина (Ме) в периферической крови и фолликулярной жидкости, отмечается у пациенток при наличии «бедного» овариального ответа и «тонкого» эндометрия, обеспечивая нарушения фолликулогенеза и снижение антиоксидантной защиты яйцеклетки в фолликуле.
- 3. Включение в прегравиларную полготовку комплекса водорастворимых полипептидных фракций эпифиза у пациенток с «бедным» ответом яичников и «тонким» эндометрием, компенсирует дефицит мелатонина на системном и локальном уровнях и повышает эффективность процедур ЭКО за счет улучшения качества ооцитов и функциональной активности эндометрия.
- 4. Комплексная индивидуализированная ПГП к циклам ЭКО с выявлением ведущих патогенетических вариантов инфертильности и персонифицированной их коррекцией позволяет повысить эффективность ВРТ у пациенток позднего репродуктивного возраста.

Степень достоверности и апробация результатов

Основные научные положения диссертации подкреплены эмпирическими изысканиями, базирующимися на теоретическом и практическом фундаменте. Достоверность данных аргументируется достаточным объемом клинических результатов. Большой перечень современных клинических и лабораторных тестов был методологически верно использован. Статистический анализ проведен непосредственно автором с использованием специализированного программного пакаета.

Результаты проделанной работы представлены: научно-практическая онлайн-конференция «Женское здоровье. Практикум акушера-гинеколога: актуальные вопросы репродуктологии» (Краснодар, 2021 г.), Межрегиональная научно-практическая конференция «Сохранение здоровья женщин при наиболее значимой акушерской и гинекологической патологии» (Майкоп, 2022 г), III Южно-Российский медицинский конгресс «Актуальные вопросы акушерства и гинекологии» (Краснодар, 2023 г.), XVII Общероссийский научно-практический семинар «Репродуктивный потенциал России: версии и контраверсии» (Сочи, 2023 г.), Научно-практическая конференция «Женское здоровье. Практикум акушера-гинеколога: Репродукция и беременность – преодоление проблем» (Краснодар, 2024 г.), «Женское здоровье. Практикум акушера-гинеколога: Возрастные аспекты гинекологической патологии. От менархе до менопаузы» (Краснодар, 2024 г.), XXV Юбилейном Всероссийском научно-образовательном форуме «Мать и Дитя – 2024» (Москва, 2024 г.).

В завершённом виде диссертация представлена и обсуждена 11 февраля 2025 года (протокол № 8) на совместном заседании кафедры акушерства, гинекологии и перинатологии № 1 и кафедры акушерства, гинекологии и перинатологии № 2 ФГБОУ ВО КубГМУ Минздрава России.

Диссертационное исследование соответствуют п. 1 «Исследования по изучению эпидемиологии, этиологии, патогенеза гинекологических заболеваний», п. 4 «Разработка и усовершенствование методов диагностики, лечения и профилактики осложненного течения беременности и родов, гинекологических заболеваний, п. 5 «Экспериментальная и клиническая разработка методов оздоровления женщины в различные периоды жизни, вне и во время беременности и внедрение их в клиническую практику» паспорта специальности 3.1.4. Акушерство и гинекология.

Внедрение результатов исследования. Результаты, полученные в рамках эмпирической части представленной работы, были апробированы и внедрены в работу ГБУЗ Родильного дома г. Краснодара Министерства здравоохранения Краснодарского края, Клиника ФГБОУ ВО КубГМУ Минздрава России, ООО СП МЦ ЭКО «ЭМБРИО», что подтверждается актами внедрения.

Личный вклад автора. Автор диссертации принимала непосредственное участие в разработке дизайна, подборе и формировании когорты пациенток, в анализе полученных результатов и статистической обработке данных, разработке программы персонифицированной ПГП. Автор полностью курировала пациенток, принимала участие в большинстве этапов ЭКО. Личный вклад автора составляет 95 % при пооучении результатов и оформоении публикаций по теме диссертации.

Публикации по теме диссертации. Результаты, полученные при проведении диссертационного исследования, опубликованы в 8 статьях, из которых 4 – в журналах, включенных в перечень рецензируемых научных изданий, или индексируемых базой данных RSCI, или входящих реферативные базы международные данных И системы цитирования, рекомендованных ВАК при Минобрнауки России для опубликования основных научных результатов диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук, и издания приравненные к ним, в журналах, TOM числе индексируемых В международной библиографической и реферативной базе SCOPUS.

Структура и объем диссертации. Содержание диссертации изложено на 227 страницах и включает: введение, обзор литературы, главу «Материалы и методы», 3 главы собственных исследований, обсуждение результатов исследования, заключение, выводы, практические рекомендации, список сокращений и условных обозначений, список литературы, который содержит 247 ссылок: 75 отечественных работ и 172 зарубежных, список иллюстративного материала. Диссертация иллюстрирована 81 таблицами и 21 рисунком, 3 схемами.

СОДЕРЖАНИЕ РАБОТЫ

Этапы и методы исследования. На ретроспективном этапе исследования (2017–2019 гг.) была изучена медицинская документация 180 женщин, которые прошли через процедуры ЭКО. Дизайн исследования представлен на рисунке 1.

1 ЭТАП (ретроспективное исследование)

Анализ документации 180 пациенток репродуктивного (п=90) и позднего репродуктивного возраста (n=90) которым проводились процедуры BPT в период 2019-2020 г.г.

Выявление вероятных причин бесплодия

2 ЭТАП (проспективное исследование) Формирование исследовательской когорты пациенток (n=352)

1 группа (основная группа), n=302 Пациентки с первичным бесплодием в позднем репродуктивном возрасте

2 группа (контрольная группа), n=50 Пациентки репродуктивного возраста (суррогатное материнство). Лаб. контроль n=50 (донорство)

Исследования: клинико-лабораторное, фолликулярный резерв, пайпель-биопсия во 2 фазе МЦ, бактериологический посев эндометрия, ультразвуковое исследование, иммуногистохимическое исследование эндометрия, гормональный профиль, мелатонин ПК и оксидантный статус. Определение исходных цитокиновых статусов (IL-6, IL-10, LIF, TGFβ1, VEGF) и уровня LL37 цервикального секрета.

Оценены параметры фолликуло- и оогенеза.

3 ЭТАП (кластерный анализ данных в 1 группе (основная)

1A подгруппа, n=62, ооцитарный фактор достаточное число полученных фолликулов, но отсутствие нормально оплодотворившихся ооцитов

1В-подгруппа, n=73, преобладание имплантационной несостоятельности эндометрия (без признаков «тонкого» эндометрия)

1C - подгруппа, n=167, сочетание овариального фактора («бедный ответ») с имплантационной несостоятельностью эндометрия («тонкий эндометрий»)

4 ЭТАП (разработка дифференцированной прегравидарной подготовки и ее применение

1А – подгруппа, n=62 Донорские ооциты или эмбрионы

1В – подгруппа, n=73 Схема 1

Схема 2

1С1 – подгруппа, n=83 1С2 – подгруппа, n=84 Схема 3

Повторное исследования: фолликулярный резерв, ультразвуковое исследование, иммуногистохимическое исследование эндометрия, гормональный профиль, мелатонин ПК. Определение цитокиновых статусов (IL-6, IL-10, LIF, TGFβ1, VEGF) и уровня LL37 цервикального секрета.

Оценка эффективности цикла ЭКО

Оценка параметров фолликуло- и оогенеза, мелатонина и оксидантного статуса фолликулярной жидкости, беременности и живорождения

Выводы, практические рекомендации

Перед исследованием получено разрешение НЭК ФГБОУ ВО КубГМУ Минздрава России: протокол № 57 от 29 ноября 2017 г.

Группы стратифицированы по «возрасту»: поздний репродуктивный ≥ 35 лет (I группа, n = 90) и репродуктивный < 35 лет (II группа, n = 90). Проанализированы причины бесплодия, эффективность этапов и возможные причины неудачных попыток ЭКО. Проспективно за 2019–2023 гг. обследованы 302 женщины (1 (основная) группа) в возрасте ≥ 35 лет, с бесплодием длительностью до 4 лет, без ОАГА, имеющие отрицательный результат ЭКО в анамнезе. Контроль (2 группа, n = 50) здоровые женщины 18–34 лет, наблюдавшиеся в рамках программы суррогатного материнства, составившие группу лабораторного контроля содержимого фолликулов, наблюдавшихся по программе донорства ооцитов.

Критерии включения: возраст 35–45 лет (основная группа), 18–34 года (контрольная группа), бесплодие, неудачное ЭКО в анамнезе, сохраненный менструальный цикл (МЦ), отсутствие тяжелых соматических заболеваний, фертильная сперма партнера, нормальный кариотип, согласие на обработку данных.

Критерии невключения в проспективный этап исследования: противопоказания и ограничения к ВРТ согласно приказа МЗ РФ от 31 июля 2020 г. № 803н; гиперпластические процессы эндометрия; наружный генитальный эндометриоз, аденомиоз; миома матки; острый и хронический метроэндометрит, сальпингоофорит в анамнезе; мужской фактор бесплодия; изменения в кариотипе супругов.

Пациенткам 1В-подгруппы была назначена антибактериальная и/или противовирусная этиотропная терапия в зависимости от характера и чувствительности инфекта, параллельно с 5 дня лечения проводили курс низкочастотной ультразвуковой кавитации с водным раствором хлоргексидина 0,05 % № 10 с интервалом 1 день, курс бовгиалуронидаза азоксимера (БГА) 3000 МЕ в/м 1 раз в 3 дня № 10; на 3 день МЦ в качестве циклической гормонотерапии (ЦГТ) назначали эстроген-гестагенный прайминг (эстрадиолгель) трансдермально 2 мг с 1-го по 25-й день и микронизированный прогестерон с 16-го по 25-й день 400 мг ежедневно интравагинально в течение 3 МЦ до стимуляции (Схема 1).

Пациенткам 1С1-подгруппы проводилась ПГП, включающая БГА 3000 МЕ, в/м 1 раз в 3 дня № 10 с переходом на интравагинальное введение

БГА (свечи 3000 МЕ). В качестве ЦГТ применяли эстроген-гестагенный прайминг (эстрадиол-гель трансдермально 2 мг с 1-го по 25-й день МЦ и микронизированный прогестерон с 16-го по 25-й день МЦ по 400 мг ежедневно интравагинально в течение 3 МЦ до стимуляции) (Схема 2). У пациенток 1С2-подгруппы ПГП с целью коррекции пинеальной недостаточности, дополнительно к стандартной ЦГТ применяли в/м введение низкомолекулярных водорастворимых полипептидных фракций эпифиза, ежедневно по 10 мг в течение 10 дней (5–15 день МЦ), предшествующего стимуляционному циклу (Схема 3). В ходе ЭКО оценены фолликуло- и оогенез, проведена оценка эффективности ЭКО при персонифицированной ПГП. Статистическая обработка проводилась методом вариационной статистики с использованием пакетов программ Statistica 10.0 и SPSS 16.0 for Windows. Различия между группами считали статистически значимыми при р < 0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

В ходе ретроспективного исследования установили, что в ПРВ (І группа) сочетанный этиологический причиной бесплодия чаще был выявленный у 47 (52,2 %) против 10 (11,1 %) случаев во ІІ группе (р < 0,001). В І группе достоверно чаще был эндокринный фактор 52 (57,8 %) против 35 (38,9 %) (p = 0,012) во II группе. Во II группе превалировал СПЯ, в І-ой чаще овариального резерва, наблюдалось естественное снижение с СПЯ. Статистически процессов овуляции, не связанные межгрупповых отличий по трубно-перитонеальному фактору не выявлено: I группа 34 (37,8 %) и II группа 30 (33,3 %), р = 0,754. Маточный фактор (патология эндометрия) чаще был в I группе у 32 (35,6 %) против 23 (25,6 %) во ІІ-ой (р = 0,003), и имел выраженное межгрупповое отличие. У пациенток ПРВ получено значимо меньше качественных ооцитов (р = 0,002), число эмбрионов хорошего и удовлетворительного качества по сравнению со II группой (р = 0,001). Выбранный протокол стимуляции не влиял на количество и качество ооцитов и эмбрионов, на частоту наступления беременности, не давал преимуществ в отношении частоты живорождений (р > 0,05). Ретроспективный анализ определил потенциальное значение овариального (снижение количества и качества ооцитов) и маточного факторов (отрицательные попытки ЭКО у пациенток в ПРВ), составившие 87,3 %. В итоге клиническая беременность (на перенос) установлена у 22,2 %, а частота живорождений у 14,4 % пациенток ПРВ, что статистически значимо разнится со II группой, где беременность и живорождения наблюдались у 36,6 % и 35,5 % соответственно (р < 0,05) (рисунок 2).

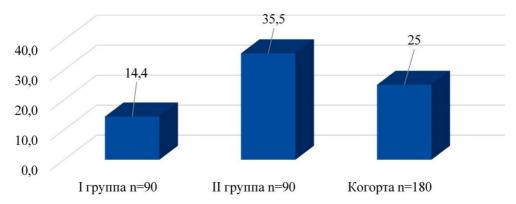


Рисунок 2 – Частота живорождения (от начатого цикла), %

Результативность ВРТ была выше у пациенток с криопереносом эмбриона в обеих группах (I группа – 4 (28,5 %) и II группа – 4 (40 %)) по сравнению с переносом эмбриона в стимулированном цикле (22,2 % и 36,6 % соответственно). При благополучном криопереносе беременность закончилась рождением ребенка, следующая попытка ЭКО была выполнена в режиме криопротокола. Ретроспективный анализ подтвердил: накопленная с возрастом гинекологическая и соматическая патология, влияет на способность к зачатию и вынашиванию беременности.

В І группе у 22 (24,4 %) пациенток не было соматической и гинекологической патологии, влияющей на фертильность. В связи с чем на проспективном этапе определяли патогенетические возрастные механизмы инфертильности: выявлены патогенетические механизмы формирования бесплодия и неудачных попыток ЭКО, определены возможные пути преодоления. У пациенток 1А-подгруппы ведущим фактором бесплодия стал ооцитарный, выражающийся в низких показателях оплодотворения и развития эмбрионов при достаточном их количестве. Учитывая удовлетворительные показатели стимулированного фолликулогенеза и имплантационных резервов эндометрия при фертильной сперме партнера, возможно предположить наличие у пациенток мутации генов (PATL2, TUBB8, WEE2 и PAD16), снижающих способность ооцитов к оплодотворению и формированию полноценных эмбрионов, остановке развития эмбриона на ранних стадиях, что повлекло

рекомендации генетической диагностики с подтверждением подозреваемых мутаций в геноме и использованием донорских ооцитов или эмбрионов.

Пациентки 1В-подгруппы не отличались от группы контроля параметрам фолликулярного резерва, результатам стимуляции суперовуляции, фолликуло-Однако них были оогенеза. V косвенные маркеры имплантационной несостоятельности эндометрия (толщина эндометрия в средней фолликулярной фазе была 9.4 ± 1.6 мм, против 13.4 ± 1.2 мм в группе контроля, р < 0,001). Снижение толщины эндометрия, не соответствующее термину «тонкий» эндометрий (< 7 мм), сопровождалось симметричным высокорезистентным маточным кровотоком, увеличением экспрессии рецепторов к эстрогену и прогестерону, снижением экспрессии LIF в железах и Эти сопровождались строме эндометрия. изменения наличием иммуногистохимических $(V \Gamma X)$ признаков умеренно выраженного хронического эндометрита (ХЭ) с аутоиммунным компонентом в фазе обострения и выявления обсеменения эндометрия условно патогенной и патогенной микрофлорой. Результаты ИГХ микробиологического И эндометрия сочетались c данными, исследования полученными цервикального секрета (ЦС): выявляли провоспалительный цитокиновый сдвиг (IL6 59,5 \pm 3,6 пг/мл против 31,2 \pm 5,1 пг/мл в контрольной группе, р < 0,001), высокий уровень кателицидина (56,9 \pm 7,1 vs 32,9 \pm 3,0, p < 0,001), косвенно TGFβ1/VEGF подтвержденное соотношением умеренное преобладание процессов фиброза над процессами ангиогенеза на фоне ХЭ.

Уровень Ме периферической крови (ПК) в 1В-подгруппе не отличался от контрольной ($26,6\pm4,23$ пг/мл и $28,9\pm5,43$ пг/мл соотвественно, р = 0,529), а Ме фолликулярной жидкости (ФЖ) был значимо ниже, чем в группе контроля ($36,3\pm1,4$ пг/мл и $39,6\pm1,6$ пг/мл, р = 0,005) и слабо коррелировал (r=0,23) с дисбалансом антиоксидантно-прооксидантной системы, отражающимся в достоверно сниженном коэффициенте SOD/MDA по сравнению с группой контроля ($0,66\pm0,05$ против $0,83\pm0,05$ (р < 0,001)). Коэффициент SOD/MDA снижался в основном за счет уменьшения активности SOD и, вероятно, связан с наличием хронического воспаления, а не с умеренным дефицитом Ме. На основании этих данных, индивидуализацией лечения в 1В-подгруппе послужила антибактериальная и/или противовирусная терапия, противовоспалительная, антифиброзирующая и ЦГТ, направленные на реабилитацию рецепторной

чувствительности эндометрия. После проведения $\Pi\Gamma\Pi$ У пациенток 1В-подгруппы, выявили изменения: в ЦС значимо снизился уровень LL37 (p < 0.001) и ПВИ до 0.87 ± 0.3 у.е. (p < 0.001), что соответствовало контролю $(0.86 \pm 0.02 \text{ у.е.}, p = 0.132)$; уменьшились уровни ФСГ и ЛГ $(6.9 \pm 2.6 \text{ мМЕ/мл и})$ 7.9 ± 2.1 мМЕ/мл против 7.7 ± 2.3 мМЕ/мл и 9.8 ± 3.55 мМЕ/мл исходно (р < 0,001)), увеличились уровни эстрадиола и прогестерона в ПК. Статистически значимо снизился индекс TGF β 1/VEGF-A: 1,1 ± 0,5 у.е. против 1,5 ± 0,7 у.е. исходно (р = 0,036), приблизившись к результатам контрольной группы (р = 0,231). Получили прямую сильную корреляцию с показателями резистентности кровотока в маточных артериях, которые статистически значимо снизились (р < 0,001) и максимально приблизились к результатам группы контроля: IR (MA) 0.82 ± 0.05 (p = 0.145) и PI (MA) 2.5 ± 0.2 (p = 0.213). Уровень LIF увеличился до 34,4 ± 5,4 пг/мл, что соответствовало группе контроля $(36,3 \pm 7,12 \text{ пг/мл})$. Результаты стимуляции суперовуляции совпали с исходными, отличаясь от молодых пациенток, и были в пределах перспективных значений для ЭКО, приведя к 100 % переносу эмбрионов. Результат персонифицированной ПГП: биохимическая беременность наступила у 50,7 %, клиническая у 37,0 %, частота живорождения была 32,9 % на цикл и перенос. Хотя результаты ниже, чем в контрольной группе, терапия повысила эффективность ЭКО до средних показателей по отчету РАРЧ.

Пациентки 1С-подгруппы были более возрастными (38,2 \pm 39,2 года). Выявлены значимые изменения у всей когорты параметров нейрогормональной регуляции МЦ: увеличение ФСГ и ЛГ, снижение прогестерона и эстрадиола, их рецепции на уровне эндометрия. В 1С-подгруппе получено минимальное количество фолликулов и ооцитов МП (3,7 \pm 1,3; 3,3 \pm 1,3, p < 0,001), наблюдался дефицит пинеальной и экстрапинеальной секреции Ме (в ПК (10,7 \pm 2,1 пг/мл против 28,9 \pm 2,4 пг/мл в контроле, p < 0,001) и ФЖ (22,7 \pm 0,7 пг/мл против 39,6 \pm 1,6 пг/мл в контроле, p < 0,001)) У пациенток 1С-подгруппы был наиболее выраженный оксидативный стресс в ФЖ (0,37 \pm 0,06 у.е), как за счёт истощения способности SOD к устранению супероксидных анион-радикалов, так и за счет увеличения интенсивности перекисного окисления липидов, который сильно коррелировал с уровнем Ме ПК и ФЖ (r = -0.87 и r = -0.92 соответственно) (рисунок 3).

Таким образом, можно предположить, что так как одним из патогенетических моментов нарушения фолликулогенеза у данных пациенток

является пинеальная дисфункция, то патогенетически обоснованная её коррекция, введенная в комплекс ПГП, может улучшить эффективность программ ЭКО. Другим патогенетическим фактором инфертильности в 1С-подгруппе стал сниженный имплантационный потенциал эндометрия. У большинства пациенток (84,4 %) 1С-подгруппы патогенной микрофлоры выделено не было, облигатно-анаэробные микроорганизмы выявлялись с частотой не более 10 % совокупно в количестве 10^4 копий в образце, но у 91,1 % определялись признаки слабо выраженного аутоимунного XЭ. Выявлено снижение экспрессии LIF в эндометрии и его уровня в ЦС и максимально выраженное повышение коэффициента $TGF\beta1/VEGF-A$ (2,1 \pm 0,8 у.е. против 0,98 \pm 0,08 у.е. в контроле, р < 0,001), что свидетельствует о преобладании фиброза над васкуляризацией, обеспечивая максимально высокорезистентный кровоток в сосудах матки, обосновывая введение в ПГП антифиброзирующей терапии.

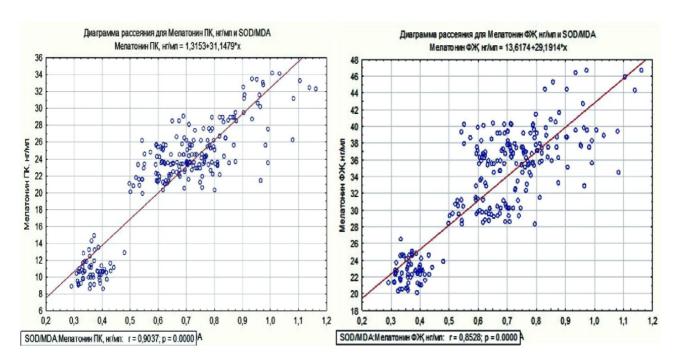


Рисунок 3 – Линейная корреляция между уровнем мелатонина ПК и $\Phi \mathbb{K}$ и коэффициентом SOD/MDA $\Phi \mathbb{K}$ (у.е.)

Индивидуализацией 1С2-подгруппе лечения В стала коррекция мелатониновой недостаточности с использованием полипептидов эпифиза, выработку Me, лечебные стимулирующих эндогенную мероприятия, корректирующие отношение TGFβ1/VEGF-A. Применение водорастворимых полипептидных фракций эпифиза привело к увеличению уровня Ме ПК и ФЖ. Полученные после ПГП средние уровни Ме сохраняли статистически значимые

отличия от результатов контрольной группы (р < 0,001), максимально приблизившись к ним. При применении только стандартной ЦГТ у пациенток 1С1-подгруппы статистически значимое повышения Ме в ПК ЖΦ отсутствовало. Применение полипептидных фракций эпифиза нормализовало показатели гипоталамо-гипофизарной оси регуляции МЦ со снижением ФСГ и ЛГ в 1,5 раза и активацией фолликулогенеза. Сравнение стандартной и расширенной ПГП показало статистически значимое изменение всех параметров стимулированного цикла в условиях коррекции пинеального лефицита препаратами эпифиза, увеличивающих выработку эндогенного Ме. Количество фолликулов в 1С2-подгруппе увеличилось в 2,8 раза, аспирировано в 3 раза больше (р < 0,001) ооцитов. После процедуры оплодотворения среднее число нормально оплодотворившихся ооцитов в 1С2-подгруппе превышало в 3 раза исходный параметр в 1С1-подгруппе (p < 0.001, OR = 4.1(2.3-5.3)). Статистически увеличилось среднее количество бластоцист отличного/хорошего качества -5.3 ± 0.6 против 0.5 ± 0.2 в 1С1-подгруппе (р < 0.001). Показатели достоверно отличались от данных 2 группы (контрольной), но имелась максимально высокая результативность по сравнению с 1С1-подгруппой (р < 0,001). Проведение ПГП препаратами, увеличивающими синтез экзогенного Ме по сравнению со стандартной ЦГТ, увеличивает вероятность переноса эмбрионов в 3 раза (OR = 3,1 (1,5-5,8)), наступление биохимической беременности в расчете на начатый цикл в 2,7 раза (OR = 2,7 (1,3-5,6)), на перенос эмбрионов в 1,7 раз (OR = 1,7 (1,3-3,8)), а наступление клинической беременности на начатый цикл почти в 3 раза (OR = 2.8 (1.3-5.9)), на перенос эмбрионов в 1.8 раза (OR = 1.8 (1.3-5.9)). Вероятность живорождения в расчете на начатый у пациенток 1С2-подгруппы увеличилась практически в (OR = 2.9 (1.3-6.3)). Высокая вероятность позитивного результата ЭКО в расчете на начатый цикл доказывает, что эпифизарные препараты увеличивают уровень Ме в ПК, коррегируют функционирование гипоталамо-гипофизарно-яичниковой оси, регуляцию МЦ и улучшают фолликулогенез в ПРВ при выраженном пинеальном дефиците. Увеличение уровня Ме в ФЖ, вероятно, за счет предотвращения возрастного оксидативного повреждения ооцитов, снижает частоту апоптоза бластоцист и улучшает развитие эмбрионов. У пациенток подгрупп 1C1 И 1С2 на фоне усиленной противофиброзирующей противовоспалительной терапии статистически значимо снизились ПВИ

(IL6/IL10) (p = 0,034 и p = 0,023) до результатов контрольной группы, индекс $TGF\beta 1/VEGF-A$ (р < 0,001) и повысился LIF (р < 0,001). Улучшение имплантационных свойств эндометрия объясняет меньшую разницу вероятности наступления биохимической, клинической беременности и живорождения в эмбриона. Персонифицированная, расчете перенос патогенетически обоснованная коррекция овариального и имплантационного факторов бесплодия у ПРВ. ЭКО: улучшает результаты пашиенток при имплантационной несостоятельности эндометрия (без признаков «тонкого» эндометрия) до 32,9 % (на цикл) по критерию «живорождение»; при сочетании овариального фактора («бедный ответ») и имплантационной несостоятельности эндометрия («тонкий» эндометрий) увеличилось количество перенесенных эмбрионов в 2,4 раза (p < 0.001, OR = 3.1 (1.4–3.4)); эффективность ЭКО по критерию «живорождение» до 27,3 % (на цикл) (рисунок 4).

Рисунок 4 – Результативность ЭКО после проведения прегравидарной подготовки (на цикл), %

ЗАКЛЮЧЕНИЕ

Таким образом, пациенткам позднего репродуктивного возраста с неудачными попытками экстракорпорального оплодотворения в анамнезе требуется персонифицированная прегравидарная подготовка к следующему циклу ЭКО с учетом ведущего патогенетического фактора, в том числе с использованием полипептидов эпифиза, и использование криопротокола.

выводы

- 1. По данным ретроспективного анализа, у пациенток позднего репродуктивного возраста результативность процедур ЭКО статистически значимо снижена и составляет по критерию «клиническая беременность» на цикл – 22,2 % и по критерию «живорождение» – 14,4 % по сравнению с женщинами репродуктивного возраста (36,6 % и 35,5 % соответственно (р < 0,001)), что связано с уменьшением фолликулярного резерва, количества эмбрионов зрелых ооцитов, качественных И неполноценностью имплантационного фактора эндометрия, при этом 24,4 % пациенток не имели отягощенного соматического, гинекологического и акушерского анамнеза. Наиболее высокая результативность наблюдается при проведении криопротокола (χ 2 = 10,2, p < 0,001; OR 1,52 95 % ДИ 1,4;3,5).
- 2. В позднем репродуктивном возрасте в когорте условно здоровых женщин нарушение фертильности и отрицательные попытки ЭКО определяются тремя основными патогенетическими вариантами: доминированием ооцитарного фактора бесплодия (достаточное количестве полученных яйцеклеток и отсутствие нормально оплодотворившихся ооцитов); преобладанием имплантационной несостоятельности эндометрия (без признаков «тонкого» эндометрия) и сочетанием овариального фактора («бедный ответ») и имплантационной несостоятельности эндометрия («тонкий эндометрий»).
- 3. Наличие преобладающей имплантационной несостоятельности эндометрия (без признаков «тонкого» эндометрия) сопровождается иммуногистохимическими признаками умеренно выраженного хронического эндометрита с бактериальным и/или вирусным обсеменением эндометрия патогенной и/или условно-патогенной микрофлорой, статистически значимым повышением уровня кателицидина (56,7 [51,8;63,6] пг/мл, p < 0,001 относительно других подгрупп) с выраженным увеличением ПВИ (1,7 [1,5;1,8] у.е.), умеренным уменьшением экспрессии LIF (28,2 [26,2;28,7] пг/мл) и умеренным увеличением соотношения TGF β 1/VEGF (1,8 [1,5;1,8] у.е., p < 0,001).
- 4. Наличие «тонкого» эндометрия у пациенток позднего репродуктивного возраста в отсутствие бактериальной обсемененности, помимо гормональных дисфункций, соотносится со слабо выраженным аутоиммунным хроническим эндометритом с максимальным повышением фиброзирующей активности и обеднением ангиогенеза (TGFβ1/VEGF 2,1 [2,1;2,4] у.е., р < 0,001) и

максимальным снижением имплантационного фактора (LIF (22,6 [22,1;26,2] пг/мл, p < 0,001).

- 5. У пациенток с сочетанием овариального фактора («бедный ответ») и имплантационной несостоятельности эндометрия («тонкий» эндометрий) наблюлается статистически значимо сниженный уровень мелатонина периферической крови (10,6 ± 4,15 пг/мл, р < 0,001 относительно других подгрупп), что способствует формированию наиболее выраженных изменений всех параметров нейрогормональной регуляции менструального (увеличение ФСГ и ЛГ, снижение уровня прогестерона и эстрадиола), а также сниженный уровень мелатонина фолликулярной жидкости (более чем в 1,5 раза), что опосредовано влияет на увеличение оксидативного стресса в фолликулах (r = -0.9).
- 6. Включение в прегравидарную подготовку у пациенток со сниженным уровнем мелатонина комплекса водорастворимых полипептидных фракций эпифиза, стимулирующих выработку пинеального и экстрапинеального мелатонина, повышает показатели фолликулогенеза в 2,4 раза (χ 2 = 13,3, p < 0,001; OR 1,12 95 % ДИ 1,4;2,5), эмбриогенеза в 2, 9 раза (χ 2 = 9,3, p < 0,001; OR 1,34 95 % ДИ 1,2;3,1), и опосредовано положительно влияет на имплантационные свойства эндометрия (увеличение толщины эндометрия в 2,2 раза (χ 2 = 5,8, p < 0,001; OR 1,22 95 % ДИ 1,3;2,9), и LIF ЦС в 1,5 раза (χ 2 = 8,5, p < 0,001; OR 1,6 95 % ДИ 1,6;3,1));
- 7. Комплексная индивидуализированная прегравидарная подготовка к циклам ЭКО с учетом выявления и коррекции ведущих патогенетических вариантов и применение криопереноса позволяет повысить эффективность ВРТ у пациенток позднего репродуктивного возраста с неудачной попыткой ЭКО в анамнезе: в подгруппе с преобладанием имплантационной несостоятельности (без признаков «тонкого» эндометрия) – ПО эндометрия «биохимическая беременность» (на цикл) – в 1,8 раза (р < 0,001, OR = 2,8 95 % Π И 1,3–5,9), составив 36,9 % (на цикл) по критерию «клиническая беременность» и 32,9 % (на цикл) по критерию «живорождение»; в группе с сочетанием овариального фактора («бедный ответ») и имплантационной эндометрия («тонкий» несостоятельности эндометрий) количества перенесенных эмбрионов в 2,4 раза (р < 0,001, OR = 3,1 95 % ДИ 1,4–3,4), «биохимической беременности» – в 7,5 раза (р < 0,001, OR = 6,3 95 % ДИ 1,5-4,5) и эффективности ЭКО по критерию «клиническая

беременность» до 28,5 % см стр (на цикл) и по критерию «живорождение» до 27,3 % (на цикл).

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Пациенткам позднего репродуктивного возраста при достаточном количестве полученных яйцеклеток и отсутствии нормально оплодотворившихся ооцитов при наличии фертильной спермы партнера рекомендуется мультигенное таргетное секвенирование, направленное на обнаружение известного набора диагностически значимых генов обеспечивающих низкое качество ооцитов (PATL2, TUBB8, WEE2 и PAD16) для выявления возможных мутаций и использование донорских ооцитов или эмбрионов.

На этапе подготовки к циклу ЭКО у пациенток позднего репродуктивного возраста, помимо стандартного обследования, рекомендованного приказом № 803 от 31 июля 2020 г. «О порядке использования вспомогательных репродуктивных технологий, противопоказаниях и ограничениях к их применению», целесообразно иммуногистохимическое исследования пайпельбиоптата и микробиологическое исследование эндометрия.

Пациенткам позднего репродуктивного возраста с неудачной попыткой ЭКО в анамнезе, целесообразно проводить криоперенос на фоне циклической гормональной терапии.

При преобладании имплантационной несостоятельности эндометрия (с отсутствием признака «тонкий» эндометрий) проводить прегравидарную подготовку, включающую: на 1 этапе – этиотропную терапию с учетом выявленных инфектов (антибиотики, анаэробные средства противовирусные препараты), параллельно с 5 дня лечения – низкочастотную ультразвуковую кавитацию с 0,05 % водным раствором хлоргексидина – 10 процедур через день, одновременно – бовгиалуронидаза азоксимер 3000 МЕ, растворенный в 2 мл 0,5 % раствора прокаина в/м 1 раз в 3 дня – 10 инъекций подкожно; на 2 этапе – эстроген-гестагенный прайминг (эстрадиол-гель трансдермально 2 мг с 1-го по 25-й день МЦ и микронизированный прогестерон с 16-го по 25-й день МЦ 400 мг ежедневно интравагинально в течение 3 циклов до цикла стимуляции). При сочетании овариального фактора («бедный ответ») и имплантационной несостоятельности эндометрия («тонкий» эндометрий) использовать прегравидарную подготовку, включающую применение низкомолекулярных водорастворимых полипептидных фракций эпифиза: на 1 этапе – в случае обнаружения патогенной микрофлоры в эндометрии этиотропная терапия и с 5 дня лечения – низкочастотная ультразвуковая кавитацию с использованием 0,05 % водного раствора хлоргексидина – 10 процедур через день.; вне зависимости от наличия патогенной микрофлоры в эндометрии – бовгиалуронидаза азоксимер 3000 МЕ растворенный в 2 мл раствора прокаина (0,5 %) в/м 1 раз в 3 дня курсом 10 инъекций с переходом на интравагинальное введение по 1 суппозиторию 3000 МЕ через 2 дня – 10 введений; на 2 этапе – эстроген-гестагенный прайминг (эстрадиол-гель трансдермально 2 мг с 1-го по 25-й день МЦ и микронизированный прогестерон с 16-го по 25-й день МЦ по 400 мг ежедневно интравагинально в течение 3 циклов до цикла стимуляции; внутримышечное введение низкомолекулярных водорастворимых полипептидных фракций эпифиза, стимулирующих выработку эндогенного мелатонина ежедневно в дозе 10 мг в течение 10 дней с 5 по 15 день менструального цикла, предшествующего стимуляционному.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Полученные результаты являются основой для более детального изучения особенностей синтеза и метаболизма пинеального и экстрапинеального мелатонина, его влияния на становление, функционирование и угасание женской репродуктивной системы, антиоксидантных и иммунотропных свойств. Перспективным является изучение возможности применения стимуляторов выработки эндогенного мелатонина для коррекции нарушений менструального цикла и инфертильности при СПЯ и ПНЯ.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- *1. Эндометриальный фактор бесплодия у пациенток позднего репродуктивного возраста. (ОБЗОР) / **К.В. Урюпина**, И.И. Куценко, Е.И. Кравцова [и др.] // Кубанский научный медицинский вестник. − 2020. − Т. 26. − № 6. − С. 149–163. (**Scopus, RSCI, BAK, Science Index (25** %))
- *2. Яичниковый фактор бесплодия у пациенток позднего репродуктивного возраста / **К.В. Урюпина**, И.И. Куценко, Е.И. Кравцова,

- П.А. Гаврюченко // Медицинский вестник Юга России. 2020. Т. 11(1). С. 14–20. (**ВАК**)
- *3. **Урюпина К.В.** Исследование структуры бесплодия и исходов программ ВРТ у пациенток позднего репродуктивного возраста / К.В. Урюпина // Медицинский вестник Юга России. 2022. Т. 13(2). С. 59–71. (**ВАК**)
- 4. Иммунологические и иммуногистохимические особенности имплантационного фактора эндометрия у здоровых пациенток позднего репродуктивного возраста / Е.И. Кравцова, Н.В. Колесникова, И.Н. Лукошкина, **К.В. Урюпина** [и др.] // Вестник Российского университета дружбы народов. Серия: Медицина. (Гинекология). 2023. Т. 27. № 1. С. 46–56.
- *5. Преодоление бедного овариального ответа в программах вспомогательных репродуктивных технологий у пациенток позднего репродуктивного возраста / **К.В. Урюпина**, И.И. Куценко, Е.И. Кравцова [и др.] // Медицинский вестник Юга России. 2024. Т. 15(1). С. 98–107. (**ВАК**)
- 6. Рецепторный потенциал эндометрия женшин позднего y репродуктивного возраста (тезис) / К.В. Урюпина, И.И. Куценко, И.Н. Лукошкина [и др.] // Материалы XI Общероссийского научнопрактического семинара «Репродуктивный потенциал России: версии и контраверсии» – 2018. – С. 65.
- 7. Результативность ЭКО у пациенток позднего репродуктивного возраста (тезис) / **К.В. Урюпина,** И.И. Куценко, Е.И. Кравцова [и др.] // Материалы XIX Всероссийского научно-образовательного форума «Мать и Дитя 2018» и VI Съезд акушеров-гинекологов России. С. 116.
- 8. Особенности цитокинового баланса фолликулярной жидкости у пациенток старшего репродуктивного возраста (тезис) // **К.В. Урюпина,** И.И. Куценко, Е.И. Кравцова, А.Г. Кокарева // Материалы V Общероссийской конференции «Перинатальная медицина: от прегравидарной подготовки к здоровому материнству и детству» 2018. С. 76.
- * работа опубликована в журналах, включенных в Перечень рецензируемых научных изданий, или индексируемых базой данных RSCI, или входящих в международные реферативные базы данных и системы цитирования, рекомендованных ВАК при Минобрнауки России для опубликования основных научных результатов диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук, и издания, приравненные к ним.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

ВРТ – вспомогательные репродуктивные технологии

ЦГТ – циклическая гормонотерапия

ИГХ – иммуногистохимия

КАФ – количество антральных фолликулов

ЛГ – лютеинизирующий гормон

MДФ (MDA) – малоновый диальдегид

МЦ – менструальный цикл

ОАГА – отягощенный акушерско-гинекологический диагноз

ОБМ – общая бактериальная масса

ПВИ – противовоспалительный индекс

ПГТ (**PGT**) – преимплантационное генетическое тестирование

ПГП – прегравидарная подготовка

ПК – периферическая кровь

ПРВ – поздний репродуктивный возраст

СОД (SOD) – супероксиддисмутаза

СПЯ – синдром поликистозных яичников

ФЖ – фолликулярная жидкость

ХЭ – хронический эндометрит

ЦС – цервикальная слизь

PRP – plateletrichplasma, обогащенная тромбоцитами плазма

VEGF – фактор роста эндотелия сосудов

Научное издание

Урюпина Кристина Владимировна

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Подписано в печать 30.09.2025
Печать трафаретная. Формат 60×84 ¹/₁₆.
Усл. печ. л. 1,0. Тираж 100 экз. Заказ № 2609
Отпечатано в ООО «Издательский Дом – Юг»
350010, г. Краснодар, ул. Зиповская, 9, литер «Г», оф. 41/3,
Тел. +7(918) 41-50-571
e-mail: id-yug@id-yug.com Сайт: https://id-yug.com